

A129404


Decimal expansion of L(3, chi3), where L(s, chi3) is the Dirichlet Lfunction for the nonprincipal character modulo 3.


20



8, 8, 4, 0, 2, 3, 8, 1, 1, 7, 5, 0, 0, 7, 9, 8, 5, 6, 7, 4, 3, 0, 5, 7, 9, 1, 6, 8, 7, 1, 0, 1, 1, 8, 0, 7, 7, 4, 7, 9, 4, 6, 1, 8, 6, 1, 1, 7, 6, 5, 8, 9, 3, 4, 7, 8, 2, 5, 8, 7, 4, 1, 4, 7, 4, 9, 1, 1, 5, 6, 6, 7, 0, 3, 3, 3, 2, 3, 1, 8, 7, 0, 1, 6, 3, 5, 9, 6, 3, 6, 4, 6, 8, 9, 5, 5, 3, 6, 0, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Contributed to OEIS on April 15, 2007  the 300th anniversary of the birth of Leonhard Euler.


REFERENCES

Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292


LINKS

Table of n, a(n) for n=0..99.


FORMULA

chi3(k) = Kronecker(3, k); chi3(k) is 0, 1, 1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = Sum_{k>=1} chi3(k) k^{3} = 1  1/2^3 + 1/4^3  1/5^3 + 1/7^3  1/8^3 + 1/10^3  1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).


EXAMPLE

L(3, chi3) = 0.8840238117500798567430579168710118077...


MATHEMATICA

nmax = 1000; First[ RealDigits[4 Pi^3/(81 Sqrt[3])  (1/2) * 10^(nmax), 10, nmax] ]


CROSSREFS

Cf. A129405, A129406, A129407, A129408, A129409, A129410, A129411.
Cf. A129658, A129659, A129660, A129661, A129662, A129663, A129664, A129665.
Sequence in context: A011213 A178728 A256489 * A222075 A117040 A085669
Adjacent sequences: A129401 A129402 A129403 * A129405 A129406 A129407


KEYWORD

nonn,cons,easy


AUTHOR

Stuart Clary, Apr 15 2007


EXTENSIONS

Offset corrected by R. J. Mathar, Feb 05 2009


STATUS

approved



