OFFSET
0,1
COMMENTS
Contributed to OEIS on Apr 15 2007 -- the 300th anniversary of the birth of Leonhard Euler.
REFERENCES
Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292.
FORMULA
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A102283 (A049347 shifted).
Series: L(3, chi3) = Sum_{k>=1} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
Equals 1 + Sum_{k>=1} ( 1/(3*k+1)^3 - 1/(3*k-1)^3 ). - Sean A. Irvine, Aug 17 2021
Equals Product_{p prime} (1 - Kronecker(-3, p)/p^3)^(-1) = Product_{p prime != 3} (1 + (-1)^(p mod 3)/p^3)^(-1). - Amiram Eldar, Nov 06 2023
EXAMPLE
L(3, chi3) = 0.8840238117500798567430579168710118077...
MATHEMATICA
nmax = 1000; First[ RealDigits[4 Pi^3/(81 Sqrt[3]) - (1/2) * 10^(-nmax), 10, nmax] ]
PROG
(PARI) 4*Pi^3/81/sqrt(3) \\ Charles R Greathouse IV, Sep 02 2024
CROSSREFS
KEYWORD
AUTHOR
Stuart Clary, Apr 15 2007
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 05 2009
STATUS
approved