

A222075


Decimal expansion of (64/10395)*Pi^5.


12



1, 8, 8, 4, 1, 0, 3, 8, 7, 9, 3, 8, 9, 9, 0, 0, 2, 4, 1, 3, 4, 8, 2, 8, 7, 0, 4, 5, 9, 6, 2, 4, 7, 0, 3, 0, 4, 4, 4, 8, 2, 1, 9, 8, 3, 8, 7, 8, 7, 5, 7, 0, 8, 8, 9, 4, 1, 0, 6, 3, 1, 6, 8, 7, 9, 1, 9, 0, 9, 9, 5, 1, 8, 6, 6, 7, 7, 5, 3, 4, 9, 3, 7, 0, 7, 5, 6, 5, 5, 6, 3, 2, 8, 0, 8, 3, 9, 5, 9, 6, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Conjectured to be density of densest packing of equal spheres in 24 dimensions (achieved for example by the Leech lattice).


REFERENCES

J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383403.
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.


LINKS

Table of n, a(n) for n=1..101.
G. Nebe and N. J. A. Sloane, Home page for Leech lattice
N. J. A. Sloane, Table of maximal density of a packing of equal spheres in ndimensional Euclidean space (for n>3 the values are only conjectural).
Index entries for transcendental numbers


EXAMPLE

1.8841038793899002413482870459624703044482198387875708894106...


PROG

(Maxima) fpprec : 100$ev((64/10395)*%pi^5)$bfloat(%); /* Martin Ettl, Feb 12 2013 */
(PARI) 64*Pi^5/10395 \\ Charles R Greathouse IV, Oct 31 2014


CROSSREFS

Related constants: A020769, A020789, A093766, A093825, A222066, A222067, A222068, A222069, A222070, A222071, A222072, A222073, A222074.
Sequence in context: A178728 A256489 A129404 * A117040 A085669 A154012
Adjacent sequences: A222072 A222073 A222074 * A222076 A222077 A222078


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane, Feb 10 2013


STATUS

approved



