

A222073


Decimal expansion of (32/25515)*Pi^4.


12



1, 2, 2, 1, 6, 6, 9, 9, 6, 3, 9, 7, 7, 2, 9, 8, 8, 4, 0, 5, 1, 1, 8, 9, 1, 2, 9, 7, 6, 8, 3, 1, 5, 2, 4, 8, 2, 8, 4, 9, 8, 0, 7, 0, 7, 0, 9, 4, 8, 8, 2, 7, 5, 5, 0, 1, 1, 8, 3, 5, 0, 5, 7, 8, 2, 7, 9, 0, 7, 7, 9, 4, 4, 1, 9, 6, 9, 3, 1, 3, 2, 5, 9, 1, 9, 6, 1, 5, 8, 1, 4, 8, 1, 9, 5, 5, 5, 4, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Conjectured to be density of densest packing of equal spheres in 12 dimensions (achieved for example by the K_12 lattice).


REFERENCES

J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383403.
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.


LINKS

Table of n, a(n) for n=0..98.
G. Nebe and N. J. A. Sloane, Home page for K_12 lattice
N. J. A. Sloane, Table of maximal density of a packing of equal spheres in ndimensional Euclidean space (for n>3 the values are only conjectural).


EXAMPLE

.12216699639772988405118912976831524828498070709488275501183...


PROG

(PARI) 32*Pi^4/25515 \\ Charles R Greathouse IV, Oct 31 2014


CROSSREFS

Related constants: A020769, A020789, A093766, A093825, A222066, A222067, A222068, A222069, A222070, A222071, A222072, A222074, A222075.
Sequence in context: A104557 A141712 A098539 * A135880 A077873 A123305
Adjacent sequences: A222070 A222071 A222072 * A222074 A222075 A222076


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane, Feb 10 2013


STATUS

approved



