

A222070


Decimal expansion of (1/144)*3^(1/2)*Pi^3.


13



3, 7, 2, 9, 4, 7, 5, 4, 5, 5, 8, 2, 0, 6, 4, 9, 3, 9, 5, 6, 3, 4, 7, 7, 5, 5, 8, 6, 7, 9, 9, 5, 8, 1, 0, 6, 3, 9, 3, 6, 6, 4, 7, 9, 7, 2, 6, 8, 3, 8, 7, 3, 6, 3, 1, 1, 1, 4, 0, 4, 0, 6, 5, 5, 9, 7, 2, 8, 3, 1, 7, 2, 0, 2, 9, 6, 8, 3, 2, 1, 9, 5, 2, 2, 5, 2, 6, 7, 2, 1, 6, 3, 5, 3, 4, 0, 5, 4, 2, 7, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Conjectured to be density of densest packing of equal spheres in six dimensions (achieved for example by the E_6 lattice).


REFERENCES

J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383403.
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.


LINKS

Table of n, a(n) for n=0..100.
G. Nebe and N. J. A. Sloane, Home page for E_6 lattice
N. J. A. Sloane, Table of maximal density of a packing of equal spheres in ndimensional Euclidean space (for n>3 the values are only conjectural).


EXAMPLE

.3729475455820649395634775586799581063936647972683873631...


PROG

(PARI) Pi^3*sqrt(3)/144 \\ Charles R Greathouse IV, Oct 31 2014


CROSSREFS

Related constants: A020769, A020789, A093766, A093825, A222066, A222067, A222068, A222069, A222071, A222072, A222073, A222074, A222075.
Sequence in context: A159759 A243964 A197837 * A163917 A266417 A260433
Adjacent sequences: A222067 A222068 A222069 * A222071 A222072 A222073


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane, Feb 10 2013


STATUS

approved



