login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141712
Triangle T, read by rows, where the n-th diagonal of T equals the BINOMIAL transform of the (n-1)-th diagonal of T^2 for n>=1, with the zeroth diagonal set to all 1's and where T^2 denotes the matrix square of T.
4
1, 1, 1, 2, 2, 1, 6, 6, 4, 1, 26, 26, 18, 8, 1, 162, 162, 114, 54, 16, 1, 1454, 1454, 1030, 506, 162, 32, 1, 18854, 18854, 13394, 6666, 2274, 486, 64, 1, 354258, 354258, 251962, 126134, 43798, 10346, 1458, 128, 1, 9671546, 9671546, 6882102, 3453110, 1210226
OFFSET
0,4
FORMULA
T(n,k) = Sum_{j=0..k} C(k,j)*[T^2](n-k+j-1,j) for n>k>=0, with T(n,n)=1, for n>=0.
EXAMPLE
Triangle T begins:
1;
1, 1;
2, 2, 1;
6, 6, 4, 1;
26, 26, 18, 8, 1;
162, 162, 114, 54, 16, 1;
1454, 1454, 1030, 506, 162, 32, 1;
18854, 18854, 13394, 6666, 2274, 486, 64, 1;
354258, 354258, 251962, 126134, 43798, 10346, 1458, 128, 1; ...
Matrix square T^2 begins:
1;
2, 1;
6, 4, 1;
26, 20, 8, 1;
162, 136, 68, 16, 1;
1454, 1292, 732, 236, 32, 1;
18854, 17400, 10648, 4036, 836, 64, 1; ...
where the BINOMIAL transform of diagonal 2 of T^2:
BINOMIAL[6,20,68,236,836,3020,11108,41516,...]
equals: [6,26,114,506,2274,10346,47634,221786,...]
which is diagonal 3 of T.
Specific examples:
T(4,1) = [T^2](2,0) + [T^2](3,1) = 6 + 20 = 26;
T(4,2) = [T^2](1,0) + 2*[T^2](2,1) + [T^2](3,2) = 2 + 2*4 + 8 = 18;
T(5,2) = [T^2](2,0) + 2*[T^2](3,1) + [T^2](4,2) = 6 + 2*20 + 68 = 114;
T(5,3) = [T^2](1,0) + 3*[T^2](2,1) + 3*[T^2](3,2) + [T^2](4,3) = 2 + 3*4 + 3*8 + 16 = 54.
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, if(n==k, 1, if(n==k+1, 2^k, if(k==1, T(n, 0), sum(j=0, k, binomial(k, j)*sum(i=0, n-k+j-1, T(n-k+j-1, i)*T(i, j)))))))
CROSSREFS
Cf. A141713 (column 0), A141714 (column 2); A141715 (T^2), A141716.
Sequence in context: A225112 A108076 A104557 * A098539 A222073 A343847
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 01 2008
STATUS
approved