login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343847
T(n, k) = (n - k)! * [x^(n-k)] exp(k*x/(1 - x))/(1 - x). Triangle read by rows, T(n, k) for 0 <= k <= n.
2
1, 1, 1, 2, 2, 1, 6, 7, 3, 1, 24, 34, 14, 4, 1, 120, 209, 86, 23, 5, 1, 720, 1546, 648, 168, 34, 6, 1, 5040, 13327, 5752, 1473, 286, 47, 7, 1, 40320, 130922, 58576, 14988, 2840, 446, 62, 8, 1, 362880, 1441729, 671568, 173007, 32344, 4929, 654, 79, 9, 1
OFFSET
0,4
FORMULA
T(n, k) = (-1)^(n - k)*U(k - n, 1, -k), where U is the Kummer U function.
T(n, k) = (n - k)! * L(n - k, -k), where L is the Laguerre polynomial function.
T(n, k) = (n - k)! * Sum_{j = 0..n - k} binomial(n - k, j) k^j / j!.
T(n, k) = (2*n-k-1)*T(n-1, k) - (n-k-1)^2*T(n-2, k) for n - k >= 2.
EXAMPLE
Triangle starts:
0: 1;
1: 1, 1;
2: 2, 2, 1;
3: 6, 7, 3, 1;
4: 24, 34, 14, 4, 1;
5: 120, 209, 86, 23, 5, 1;
6: 720, 1546, 648, 168, 34, 6, 1;
7: 5040, 13327, 5752, 1473, 286, 47, 7, 1;
8: 40320, 130922, 58576, 14988, 2840, 446, 62, 8, 1;
.
Array whose upward read antidiagonals are the rows of the triangle.
n\k 0 1 2 3 4 5 6
-----------------------------------------------------------------
0: 1, 1, 1, 1, 1, 1, 1, ...
1: 1, 2, 3, 4, 5, 6, 7, ...
2: 2, 7, 14, 23, 34, 47, 62, ...
3: 6, 34, 86, 168, 286, 446, 654, ...
4: 24, 209, 648, 1473, 2840, 4929, 7944, ...
5: 120, 1546, 5752, 14988, 32344, 61870, 108696, ...
6: 720, 13327, 58576, 173007, 414160, 866695, 1649232, ...
7: 5040, 130922, 671568, 2228544, 5876336, 13373190, 27422352, ...
MAPLE
T := proc(n, k) option remember;
if n = k then return 1 elif n = k+1 then return k+1 fi;
(2*n-k-1)*T(n-1, k) - (n-k-1)^2*T(n-2, k) end:
seq(print(seq(T(n , k), k = 0..n)), n = 0..7);
MATHEMATICA
T[n_, k_] := (-1)^(n - k) HypergeometricU[k - n, 1, -k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
(* Alternative: *)
TL[n_, k_] := (n - k)! LaguerreL[n - k, -k];
Table[TL[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
PROG
(PARI)
T(n, k) = (n - k)!*sum(j=0, n - k, binomial(n - k, j) * k^j / j!)
for(n=0, 9, for(k=0, n, print(T(n, k))))
(SageMath) # Columns of the array.
def column(k, len):
R.<x> = PowerSeriesRing(QQ, default_prec=len)
f = exp(k * x / (1 - x)) / (1 - x)
return f.egf_to_ogf().list()
for col in (0..6): print(column(col, 20))
CROSSREFS
Row sums: A343848. T(2*n, n) = A277373(n). Variant: A289192.
Cf. A021009 (Laguerre polynomials), A344048.
Sequence in context: A141712 A098539 A222073 * A135880 A077873 A123305
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 07 2021
STATUS
approved