login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289213
a(n) = n! * Laguerre(n,-7).
3
1, 8, 79, 916, 12113, 179152, 2921911, 51988748, 1000578817, 20686611736, 456805020959, 10721879413252, 266382974861521, 6980304560060384, 192311632290456007, 5555079068684580988, 167822887344661475969, 5290815252203206305832, 173713426149927498289903
OFFSET
0,2
FORMULA
E.g.f.: exp(7*x/(1-x))/(1-x).
a(n) = n! * Sum_{i=0..n} 7^i/i! * binomial(n,i).
a(n) = n! * A160607(n)/A160608(n).
a(n) ~ exp(-7/2 + 2*sqrt(7*n) - n) * n^(n + 1/4) / (sqrt(2)*7^(1/4)) * (1 + 367/(48*sqrt(7*n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 7^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020
MAPLE
a:= n-> n! * add(binomial(n, i)*7^i/i!, i=0..n):
seq(a(n), n=0..20);
MATHEMATICA
Table[n!*LaguerreL[n, -7], {n, 0, 20}] (* Indranil Ghosh, Jul 04 2017 *)
PROG
(Python)
from mpmath import *
mp.dps=100
def a(n): return int(fac(n)*laguerre(n, 0, -7))
print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017
(PARI) x = 'x + O('x^30); Vec(serlaplace(exp(7*x/(1-x))/(1-x))) \\ Michel Marcus, Jul 04 2017
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(7*x/(1-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 13 2018
CROSSREFS
Column k=7 of A289192.
Sequence in context: A224759 A024102 A034355 * A201513 A344660 A069022
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 28 2017
STATUS
approved