login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343845
a(n) = Sum_{k=0..floor(n/2)} A109449(n-k, k).
0
1, 1, 2, 4, 9, 27, 93, 392, 1898, 10493, 64885, 443916, 3326317, 27085015, 238073306, 2246348560, 22643042325, 242808804441, 2759740869777, 33138397797908, 419171443909394, 5570771017483187, 77603014042711369, 1130712331125929112, 17198408830271090233
OFFSET
0,3
FORMULA
a(n) ~ 2^(n+2) * n! / Pi^(n+1). - Vaclav Kotesovec, May 06 2021
MAPLE
seq(add(A109449(n-k, k), k = 0..n/2), n = 0..25);
MATHEMATICA
Table[Sum[Binomial[n-k, k] * 2^(n-2*k) * Abs[EulerE[n-2*k, 1/2] + EulerE[n-2*k, 1]], {k, 0, Floor[n/2]}] - (1 + (-1)^n)/2, {n, 0, 25}] (* Vaclav Kotesovec, May 06 2021 *)
CROSSREFS
Cf. A109449.
Sequence in context: A148085 A003320 A007876 * A349404 A332979 A176068
KEYWORD
nonn
AUTHOR
Peter Luschny, May 06 2021
STATUS
approved