login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343842
Series expansion of 1/sqrt(8*x^2 + 1), even powers only.
1
1, -4, 24, -160, 1120, -8064, 59136, -439296, 3294720, -24893440, 189190144, -1444724736, 11076222976, -85201715200, 657270374400, -5082890895360, 39392404439040, -305870434467840, 2378992268083200, -18531097667174400, 144542561803960320, -1128808577897594880
OFFSET
0,2
COMMENTS
Essentially the inverse binomial convolution of the Delannoy numbers.
FORMULA
a(n) = n! * [x^n] BesselJ(0, sqrt(8)*x).
D-finite with recurrence a(n) = 4*(1 - 2*n)*a(n - 1) / n for n >= 2.
a(n) = A(2*n) where A(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A008288(n, k).
MAPLE
gf := 1/sqrt(8*x^2 + 1): ser := series(gf, x, 32):
seq(coeff(ser, x, 2*n), n = 0..21);
MATHEMATICA
Take[CoefficientList[Series[1/Sqrt[8*x^2 + 1], {x, 0, 42}], x], {1, -1, 2}] (* Amiram Eldar, May 05 2021 *)
PROG
(PARI) my(x='x+O('x^25)); Vec(1/sqrt(8*x + 1)) \\ Michel Marcus, May 04 2021
CROSSREFS
Signed version of A059304.
Sequence in context: A084130 A059304 A069722 * A027079 A213441 A238299
KEYWORD
sign,easy
AUTHOR
Peter Luschny, May 04 2021
STATUS
approved