login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069722
Number of rooted unicursal planar maps with n edges and exactly one vertex of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
5
0, 4, 24, 160, 1120, 8064, 59136, 439296, 3294720, 24893440, 189190144, 1444724736, 11076222976, 85201715200, 657270374400, 5082890895360, 39392404439040, 305870434467840, 2378992268083200, 18531097667174400, 144542561803960320, 1128808577897594880
OFFSET
1,2
LINKS
Valery A. Liskovets and Timothy R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
FORMULA
a(n) = 2^(n-1)*binomial(2n-2, n-1), n>1.
a(n) = 2*A069723(n), n>1.
G.f. for a(n)^2: 1/AGM(1, (1-64*x)^(1/2)). - Benoit Cloitre, Jan 01 2004
a(n) = A059304(n-1), n>1. [R. J. Mathar, Sep 29 2008]
a(n) ~ 2^(3*n-3)/sqrt(Pi*n). - Vaclav Kotesovec, Sep 28 2019
E.g.f.: x * (exp(4*x) * (BesselI(0,4*x) - BesselI(1,4*x)) - 1). - Ilya Gutkovskiy, Nov 03 2021
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=2} 1/a(n) = 1/7 + 8*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=2} (-1)^n/a(n) = 1/9 + 4*log(2)/27. (End)
MAPLE
Z:=(1-sqrt(1-z))*8^n/sqrt(1-z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=0..19); # Zerinvary Lajos, Jan 01 2007
MATHEMATICA
Join[{0}, Table[2^(n-1) Binomial[2n-2, n-1], {n, 2, 20}]] (* Harvey P. Dale, Nov 16 2011 *)
PROG
(Magma) [0] cat[2^(n-1)*Binomial(2*n-2, n-1): n in [2..20]]; // Vincenzo Librandi, Nov 17 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 07 2002
STATUS
approved