Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Jan 16 2024 01:39:44
%S 0,4,24,160,1120,8064,59136,439296,3294720,24893440,189190144,
%T 1444724736,11076222976,85201715200,657270374400,5082890895360,
%U 39392404439040,305870434467840,2378992268083200,18531097667174400,144542561803960320,1128808577897594880
%N Number of rooted unicursal planar maps with n edges and exactly one vertex of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
%H Vincenzo Librandi, <a href="/A069722/b069722.txt">Table of n, a(n) for n = 1..200</a>
%H Valery A. Liskovets and Timothy R. S. Walsh, <a href="http://dx.doi.org/10.1016/j.disc.2003.09.015">Enumeration of Eulerian and unicursal planar maps</a>, Discr. Math., 282 (2004), 209-221.
%F a(n) = 2^(n-1)*binomial(2n-2, n-1), n>1.
%F a(n) = 2*A069723(n), n>1.
%F G.f. for a(n)^2: 1/AGM(1, (1-64*x)^(1/2)). - _Benoit Cloitre_, Jan 01 2004
%F a(n) = A059304(n-1), n>1. [_R. J. Mathar_, Sep 29 2008]
%F a(n) ~ 2^(3*n-3)/sqrt(Pi*n). - _Vaclav Kotesovec_, Sep 28 2019
%F E.g.f.: x * (exp(4*x) * (BesselI(0,4*x) - BesselI(1,4*x)) - 1). - _Ilya Gutkovskiy_, Nov 03 2021
%F From _Amiram Eldar_, Jan 16 2024: (Start)
%F Sum_{n>=2} 1/a(n) = 1/7 + 8*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
%F Sum_{n>=2} (-1)^n/a(n) = 1/9 + 4*log(2)/27. (End)
%p Z:=(1-sqrt(1-z))*8^n/sqrt(1-z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=0..19); # _Zerinvary Lajos_, Jan 01 2007
%t Join[{0},Table[2^(n-1) Binomial[2n-2,n-1],{n,2,20}]] (* _Harvey P. Dale_, Nov 16 2011 *)
%o (Magma) [0] cat[2^(n-1)*Binomial(2*n-2, n-1): n in [2..20]]; // _Vincenzo Librandi_, Nov 17 2011
%Y Cf. A059304, A069720, A069721, A069723, A089156.
%K easy,nonn
%O 1,2
%A _Valery A. Liskovets_, Apr 07 2002