Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 25 2024 08:46:38
%S 1,-4,24,-160,1120,-8064,59136,-439296,3294720,-24893440,189190144,
%T -1444724736,11076222976,-85201715200,657270374400,-5082890895360,
%U 39392404439040,-305870434467840,2378992268083200,-18531097667174400,144542561803960320,-1128808577897594880
%N Series expansion of 1/sqrt(8*x^2 + 1), even powers only.
%C Essentially the inverse binomial convolution of the Delannoy numbers.
%F a(n) = n! * [x^n] BesselJ(0, sqrt(8)*x).
%F D-finite with recurrence a(n) = 4*(1 - 2*n)*a(n - 1) / n for n >= 2.
%F a(n) = A(2*n) where A(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A008288(n, k).
%p gf := 1/sqrt(8*x^2 + 1): ser := series(gf, x, 32):
%p seq(coeff(ser, x, 2*n), n = 0..21);
%t Take[CoefficientList[Series[1/Sqrt[8*x^2 + 1], {x, 0, 42}], x], {1, -1, 2}] (* _Amiram Eldar_, May 05 2021 *)
%o (PARI) my(x='x+O('x^25)); Vec(1/sqrt(8*x + 1)) \\ _Michel Marcus_, May 04 2021
%Y Signed version of A059304.
%Y Cf. A008288, A006139.
%K sign,easy
%O 0,2
%A _Peter Luschny_, May 04 2021