login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343841
a(n) = Sum{k=0..n} (-1)^(n-k)*binomial(n, k)*Stirling2(n, k).
2
1, 1, -1, -5, 15, 56, -455, -237, 16947, -64220, -529494, 6833608, -8606015, -459331677, 4335744673, 6800310151, -518075832085, 4315086396640, 19931595013738, -812870258798156, 6648395876520816, 46852711038750520, -1752440325584024944, 15485712825845269456
OFFSET
0,4
MAPLE
a := n -> add((-1)^(n-k)*binomial(n, k)*Stirling2(n, k), k=0..n):
seq(a(n), n = 0..24);
MATHEMATICA
a[n_] := Sum[(-1)^(n - k) * Binomial[n, k] * StirlingS2[n, k], {k, 0, n}]; Array[a, 24, 0] (* Amiram Eldar, May 07 2021 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*stirling(n, k, 2)); \\ Michel Marcus, May 07 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, May 04 2021
STATUS
approved