login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343840
a(n) = Sum_{k=0..n}(-1)^(n-k)*binomial(n, k)*|A021009(n, k)|.
3
1, 0, -5, 22, 9, -1244, 14335, -79470, -586943, 25131304, -434574909, 4418399470, 8524321465, -1771817986548, 53502570125719, -1052208254769014, 11804172888840705, 131741085049224400, -12970386000411511733, 482732550618027365574, -12599999790172579025879
OFFSET
0,3
COMMENTS
Related to the coefficient triangle of generalized Laguerre polynomials A021009.
FORMULA
Sum_{n>=0} a(n) * x^n / n!^3 = BesselJ(0,2*sqrt(x)) * Sum_{n>=0} x^n / n!^3. - Ilya Gutkovskiy, Jun 19 2022
MAPLE
T := proc(n, k) local S; S := proc(n, k) option remember;
`if`(k = 0, 1, `if`(k > n, 0, S(n-1, k-1)/k + S(n-1, k))) end: n!*S(n, k) end:
a := n -> add((-1)^(n-j)*T(n, j)*binomial(n, j), j=0..n): seq(a(n), n=0..20);
PROG
(PARI) rowT(n) = Vecrev(n!*pollaguerre(n)); \\ A021009
a(n) = my(v=rowT(n)); sum(k=0, n, (-1)^(n-k)*binomial(n, k)*abs(v[k+1])); \\ Michel Marcus, May 04 2021
CROSSREFS
Sequence in context: A156860 A225846 A247937 * A270406 A209049 A217444
KEYWORD
sign
AUTHOR
Peter Luschny, May 04 2021
STATUS
approved