login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104557
Triangle T, read by rows, such that the unsigned columns of the matrix inverse when read downwards equals the rows of T read backwards, with T(n,n)=1 and T(n,n-1) = floor((n+1)/2)*floor((n+2)/2).
3
1, 1, 1, 2, 2, 1, 6, 6, 4, 1, 24, 24, 18, 6, 1, 120, 120, 96, 36, 9, 1, 720, 720, 600, 240, 72, 12, 1, 5040, 5040, 4320, 1800, 600, 120, 16, 1, 40320, 40320, 35280, 15120, 5400, 1200, 200, 20, 1, 362880, 362880, 322560, 141120, 52920, 12600, 2400, 300, 25, 1
OFFSET
0,4
COMMENTS
Matrix inverse is A104558. Row sums form A102038. See A104559 for further formulas, where A104559(n,k) = T(n,k)/(n-k)!.
FORMULA
Formula: T(n,k) = (n-k)!*C(n-floor(k/2), floor((k+1)/2))*C(n-floor((k+1)/2), floor(k/2)).
Recurrence: T(n,k) = n*T(n-1,k) + T(n-2,k-2) for n >= k >= 2, with T(0,0) = T(1,0) = T(1,1) = 1.
T(n,0) = n!.
T(n,k) = T(n-1,k-1) + floor((k+2)/2)*T(n,k+1), T(0,0)=1, T(n,k)=0 for k > n or for k < 0. - Philippe Deléham, Dec 18 2006
EXAMPLE
Rows of T begin:
1;
1, 1;
2, 2, 1;
6, 6, 4, 1;
24, 24, 18, 6, 1;
120, 120, 96, 36, 9, 1;
720, 720, 600, 240, 72, 12, 1;
5040, 5040, 4320, 1800, 600, 120, 16, 1;
40320, 40320, 35280, 15120, 5400, 1200, 200, 20, 1; ...
The matrix inverse A104558 begins:
1;
-1, 1;
0, -2, 1;
0, 2, -4, 1;
0, 0, 6, -6, 1;
0, 0, -6, 18, -9, 1;
0, 0, 0, -24, 36, -12, 1;
0, 0, 0, 24, -96, 72, -16, 1; ...
PROG
(PARI) T(n, k)=(n-k)!*binomial(n-(k\2), (k+1)\2)*binomial(n-((k+1)\2), k\2)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 16 2005
STATUS
approved