login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104555
Expansion of x*(1 - x)/(1 - x + x^2)^3.
2
0, 1, 2, 0, -5, -7, 0, 12, 15, 0, -22, -26, 0, 35, 40, 0, -51, -57, 0, 70, 77, 0, -92, -100, 0, 117, 126, 0, -145, -155, 0, 176, 187, 0, -210, -222, 0, 247, 260, 0, -287, -301, 0, 330, 345, 0, -376, -392, 0, 425, 442, 0, -477, -495
OFFSET
0,3
COMMENTS
Image of C(n+1,2) under the Riordan array (1, x*(1-x)).
FORMULA
a(n) = 3*a(n-1) - 6*a(n-2) + 7*a(n-3) - 6*a(n-4) + 3*a(n-5) - a(n-6).
a(n) = Sum_{k=0..n} binomial(k, n-k)(-1)^(n-k)*k(k+1)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*(n-k)(n-k+1)/2.
a(3*n) = 0, a(3*n-2) = n*(3*n - 1)/2, a(3*n-1) = n*(3*n + 1)/2. - Ralf Stephan, May 20 2007
a(n) = ((Sum_{k=1..n+1} k^5) mod (Sum_{k=1..n+1} k^3))/((n+1)*(n+2))*(-1)^floor((n mod 6)/4). - Gary Detlefs, Oct 31 2011
MAPLE
S:=(j, n)->sum(k^j, k=1..n):seq((S(5, n+1)mod S(3, n+1))/((n+1)*(n+2))*(-1)^floor((n mod 6)/4), n=1..40). # Gary Detlefs, Oct 31 2011
MATHEMATICA
CoefficientList[Series[x*(1-x)/(1-x+x^2)^3, {x, 0, 60}], x] (* Harvey P. Dale, Apr 13 2011 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1-x)/(1-x+x^2)^3 )); // G. C. Greubel, Jan 01 2023
(Sage)
def A104555_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1-x)/(1-x+x^2)^3 ).list()
A104555_list(60) # G. C. Greubel, Jan 01 2023
CROSSREFS
Sequence in context: A320372 A097709 A197877 * A140571 A078049 A021490
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 14 2005
STATUS
approved