login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095130
Expansion of (x+x^2)/(1-x^6); period 6: repeat [0, 1, 1, 0, 0, 0].
3
0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1
OFFSET
0,1
COMMENTS
Sequences of period k composed of (k-p) zeros followed by p ones have a closed formula of floor((n mod k)/(k-p)), for p>=floor(n/2). [Gary Detlefs, May 18 2011]
FORMULA
G.f.: x/(1-x+x^2-x^3+x^4-x^5);
a(n) = 1/3-cos(2*Pi*n/3)/3+sin(Pi*n/3)/sqrt(3).
a(n) = mod(A095129(n),3).
a(n) = floor(((n+3) mod 6)/4). [Gary Detlefs, May 18 2011]
a(0)=0, a(1)=1, a(2)=1, a(3)=0, a(4)=0, a(n) = a(n-1)-a(n-2)+a(n-3)-a(n-4)+ a(n-5). - Harvey P. Dale, Nov 18 2013
a(n) = floor((n-1)/6) - floor((n-3)/6). - Wesley Ivan Hurt, Sep 08 2015
MAPLE
A095130:=n->floor(((n+3) mod 6)/4); seq(A095130(n), n=0..100); # Wesley Ivan Hurt, Feb 24 2014
MATHEMATICA
PadRight[{}, 120, {0, 1, 1, 0, 0, 0}] (* or *) LinearRecurrence[{1, -1, 1, -1, 1}, {0, 1, 1, 0, 0}, 120] (* Harvey P. Dale, Nov 18 2013 *)
PROG
(Magma) [Floor(((n+3) mod 6)/4) : n in [0..100]]; // Wesley Ivan Hurt, Sep 08 2015
(Magma) &cat[[0, 1, 1, 0, 0, 0]: n in [0..15]]; // Vincenzo Librandi, Sep 09 2015
CROSSREFS
Sequence in context: A194685 A182582 A125720 * A284789 A288736 A270803
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 29 2004
EXTENSIONS
Corrected by T. D. Noe, Nov 08 2006
STATUS
approved