OFFSET
0,1
COMMENTS
Sequences of period k composed of (k-p) zeros followed by p ones have a closed formula of floor((n mod k)/(k-p)), for p>=floor(n/2). [Gary Detlefs, May 18 2011]
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1).
FORMULA
G.f.: x/(1-x+x^2-x^3+x^4-x^5);
a(n) = 1/3-cos(2*Pi*n/3)/3+sin(Pi*n/3)/sqrt(3).
a(n) = mod(A095129(n),3).
a(n) = floor(((n+3) mod 6)/4). [Gary Detlefs, May 18 2011]
a(0)=0, a(1)=1, a(2)=1, a(3)=0, a(4)=0, a(n) = a(n-1)-a(n-2)+a(n-3)-a(n-4)+ a(n-5). - Harvey P. Dale, Nov 18 2013
a(n) = floor((n-1)/6) - floor((n-3)/6). - Wesley Ivan Hurt, Sep 08 2015
MAPLE
MATHEMATICA
PadRight[{}, 120, {0, 1, 1, 0, 0, 0}] (* or *) LinearRecurrence[{1, -1, 1, -1, 1}, {0, 1, 1, 0, 0}, 120] (* Harvey P. Dale, Nov 18 2013 *)
PROG
(Magma) [Floor(((n+3) mod 6)/4) : n in [0..100]]; // Wesley Ivan Hurt, Sep 08 2015
(Magma) &cat[[0, 1, 1, 0, 0, 0]: n in [0..15]]; // Vincenzo Librandi, Sep 09 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 29 2004
EXTENSIONS
Corrected by T. D. Noe, Nov 08 2006
STATUS
approved