login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182582
a(n) = (A096268(n-1) + A182581(n)) mod 2.
2
0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1
OFFSET
1
COMMENTS
Parity of A169611 (the sum of the 2-adic and 3-adic valuations of n). - Antti Karttunen, Jul 02 2024
LINKS
Dimitri Hendriks, Frits G. W. Dannenberg, Jorg Endrullis, Mark Dow and Jan Willem Klop, Arithmetic Self-Similarity of Infinite Sequences, arXiv preprint 1201.3786 [math.CO], 2012. See Table 1.
FORMULA
a(n) = A000035(A169611(n)) = A000035(A007814(n)+A007949(n)). - Antti Karttunen, Jul 02 2024
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/12. - Amiram Eldar, Jul 03 2024
MATHEMATICA
A096268 = Join[{{0}}, SubstitutionSystem[{0 -> {0, 1}, 1 -> {0, 0}}, {1}, 6]] // Flatten;
A182581 = Mod[IntegerExponent[Range[Length[A096268]], 3], 2];
Mod[A096268 + A182581, 2] (* Jean-François Alcover, Feb 13 2019 *)
a[n_] := Mod[Plus @@ IntegerExponent[n, {2, 3}], 2]; Array[a, 100] (* Amiram Eldar, Jul 03 2024 *)
PROG
(PARI) A182582(n) = ((valuation(n, 2)+valuation(n, 3))%2); \\ Antti Karttunen, Jul 02 2024
CROSSREFS
Characteristic function of A325424, whose complement A036668 gives the indices of 0's.
Sequence in context: A189816 A342000 A194685 * A125720 A095130 A284789
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 06 2012
EXTENSIONS
Indexing of A096268 corrected in the definition, to match with the data - Antti Karttunen, Jul 02 2024
STATUS
approved