

A325424


Complement of A036668: numbers not of the form 2^i*3^j*k, i + j even, (k,6) = 1.


9



2, 3, 8, 10, 12, 14, 15, 18, 21, 22, 26, 27, 32, 33, 34, 38, 39, 40, 46, 48, 50, 51, 56, 57, 58, 60, 62, 69, 70, 72, 74, 75, 82, 84, 86, 87, 88, 90, 93, 94, 98, 104, 105, 106, 108, 110, 111, 118, 122, 123, 126, 128, 129, 130, 132, 134, 135, 136, 141, 142
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

These are the numbers 2x and 3x as x ranges through the numbers in A036668.
Numbers whose squarefree part is divisible by exactly one of {2, 3}.  Peter Munn, Aug 24 2020
The asymptotic density of this sequence is 5/12.  Amiram Eldar, Sep 20 2020


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Symmetric difference


FORMULA

(2 * {A036668}) union (3 * {A036668}).  Sean A. Irvine, May 19 2019


MATHEMATICA

a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or,
Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}],
IntegerQ]]] &]], {150}]; a (* A036668 *)
Complement[Range[Last[a]], a] (* A325424 *)
(* Peter J. C. Moses, Apr 23 2019 *)


CROSSREFS

Cf. A325417, A036668.
Symmetric difference of: A003159 and A007417; A036554 and A145204\{0}.
Sequence in context: A008522 A028732 A028751 * A057543 A190650 A000059
Adjacent sequences: A325421 A325422 A325423 * A325425 A325426 A325427


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Apr 26 2019


STATUS

approved



