The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036668 Hati numbers: of form 2^i*3^j*k, i+j even, (k,6)=1. 13
 1, 4, 5, 6, 7, 9, 11, 13, 16, 17, 19, 20, 23, 24, 25, 28, 29, 30, 31, 35, 36, 37, 41, 42, 43, 44, 45, 47, 49, 52, 53, 54, 55, 59, 61, 63, 64, 65, 66, 67, 68, 71, 73, 76, 77, 78, 79, 80, 81, 83, 85, 89, 91, 92, 95, 96, 97, 99, 100, 101, 102, 103, 107 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If n appears then 2n and 3n do not. - Benoit Cloitre, Jun 13 2002 Closed under multiplication. Each term is a product of a unique subset of {6} U A050376 \ {2,3}. - Peter Munn, Sep 14 2019 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 Don McDonald, Obituary of Alan Robert Boyd, posted to sci.math Jan 02 1999; alternative link. FORMULA a(n) = 12/7 * n + O(log^2 n). - Charles R Greathouse IV, Sep 10 2015 {a(n)} = A052330({A014601(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Sep 14 2019 MAPLE N:= 1000: # to get all terms up to N A:= {seq(2^i, i=0..ilog2(N))}: Ae, Ao:= selectremove(issqr, A): Be:= map(t -> seq(t*9^j, j=0 .. floor(log[9](N/t))), Ae): Bo:= map(t -> seq(t*3*9^j, j=0..floor(log[9](N/(3*t)))), Ao): B:= Be union Bo: C1:= map(t -> seq(t*(6*i+1), i=0..floor((N/t -1)/6)), B): C2:= map(t -> seq(t*(6*i+5), i=0..floor((N/t - 5)/6)), B): A036668:= C1 union C2; # Robert Israel, May 09 2014 MATHEMATICA a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1, Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}], IntegerQ]]] &]], {150}]; a  (* A036668 *) (* Peter J. C. Moses, Apr 23 2019 *) PROG (PARI) twos(n) = {local(r, m); r=0; m=n; while(m%2==0, m=m/2; r++); r} threes(n) = {local(r, m); r=0; m=n; while(m%3==0, m=m/3; r++); r} isA036668(n) = (twos(n)+threes(n))%2==0 \\ Michael B. Porter, Mar 16 2010 (PARI) is(n)=(valuation(n, 2)+valuation(n, 3))%2==0 \\ Charles R Greathouse IV, Sep 10 2015 (PARI) list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 3), N=if(n%2, 2*3^n, 3^n); while(N<=lim, forstep(k=N, lim, [4*N, 2*N], listput(v, k)); N<<=2)); Set(v) \\ Charles R Greathouse IV, Sep 10 2015 CROSSREFS Cf. A003159, A007310, A014601, A036667, A050376, A052330, A325424 (complement). Sequence in context: A022299 A099049 A217128 * A260997 A192242 A010381 Adjacent sequences:  A036665 A036666 A036667 * A036669 A036670 A036671 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Antreas P. Hatzipolakis (xpolakis(AT)hol.gr) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 09:52 EDT 2021. Contains 347597 sequences. (Running on oeis4.)