The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A325423 Numbers k such that sigma(2*k+1) >= sigma(2*k). 1
 1, 7, 31, 37, 67, 73, 97, 103, 127, 157, 199, 202, 229, 241, 247, 262, 277, 283, 307, 313, 331, 337, 346, 367, 379, 382, 397, 409, 427, 457, 472, 487, 499, 517, 547, 562, 577, 607, 619, 643, 661, 667, 682, 697, 727, 757, 769, 787 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The function A(x) enumerating the number of terms not exceeding x has the property that lim A(x)/x exists (Hildebrand, 1990). REFERENCES M. Laub, Advanced Problems: 6555. The American Mathematical Monthly, 94(8), 800 (1987). doi:10.2307/2323430. LINKS Giuseppe Melfi, Table of n, a(n) for n = 1..2763 Mits Kobayashi, Tim Trudgian, On integers n for which sigma(2n+1)>=sigma(2n), arXiv:1904.10064 [math.NT], 2019. M. Laub & L. Mattics, Problem 6555: Odd Integers with Relatively Large Divisor Sum, The American Mathematical Monthly, 97(4), 351-353 (1990). doi:10.2307/2324532. FORMULA a(n) ~ c*n with 18.2 < c < 18.6 (claimed by Kobayashi and Trudgian). EXAMPLE 7 is in the sequence because sigma(14) = 1+2+7+14 = 24 <= sigma(15) = 1+3+5+15 = 24; 31 is in the sequence because sigma(62) = 1+2+31+62 = 96 <= sigma(63) = 1+3+7+9+21+63 = 104. PROG (PARI) isok(n) = sigma(2*n+1) >= sigma(2*n); \\ Michel Marcus, Sep 09 2019 CROSSREFS Cf. A082957. Sequence in context: A241101 A238664 A272201 * A309381 A276741 A000696 Adjacent sequences:  A325420 A325421 A325422 * A325424 A325425 A325426 KEYWORD nonn AUTHOR Giuseppe Melfi, Sep 06 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 14:47 EDT 2021. Contains 343860 sequences. (Running on oeis4.)