The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011658 Period 5: repeat [0, 0, 0, 1, 1]; also expansion of 1/(x^4 + x^3 + x^2 + x + 1) (mod 2). 3
 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Sequences of period k composed of (k-p) zeros followed by p ones have a closed formula of floor((n mod k)/(k-p)), for p >= floor(k/2). - Gary Detlefs, May 18 2011 LINKS R. Gold, Characteristic linear sequences and their coset functions, J. SIAM Applied. Math., 14 (1966), 980-985. Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1). FORMULA a(n) = floor((n mod 5)/3). - Gary Detlefs, May 18 2011 a(n+2) = A198517(n+4) - A198517(n+2) + A198517(n). - Bruno Berselli, Nov 02 2011 a(n+4) = abs(a(n) - a(n+1) + a(n+2) - a(n+3)). - Benjamin Knight, May 06 2018 a(n) = (2/5) * (1 + cos(4*(n-4)*Pi/5) + cos(2*(n-3)*Pi/5) + cos(4*(n-3)*Pi/5) + cos(2*(n+1)*Pi/5)). - Wesley Ivan Hurt, Sep 26 2018 G.f.: -x^3*(1+x) / ( (x-1)*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Aug 11 2021 MATHEMATICA PadRight[{}, 120, {0, 0, 0, 1, 1}] (* Harvey P. Dale, Dec 16 2015 *) PROG (PARI) a(n)=(n%5)\3 \\ Charles R Greathouse IV, Jan 16 2017 CROSSREFS Cf. A198517. Parity of A010891(n+2). Sequence in context: A288710 A179827 A285133 * A135461 A327219 A274950 Adjacent sequences:  A011655 A011656 A011657 * A011659 A011660 A011661 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 12:09 EDT 2022. Contains 356145 sequences. (Running on oeis4.)