|
|
A011658
|
|
Period 5: repeat [0, 0, 0, 1, 1]; also expansion of 1/(x^4 + x^3 + x^2 + x + 1) (mod 2).
|
|
3
|
|
|
0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Sequences of period k composed of (k-p) zeros followed by p ones have a closed formula of floor((n mod k)/(k-p)), for p >= floor(k/2). - Gary Detlefs, May 18 2011
|
|
LINKS
|
Table of n, a(n) for n=0..80.
R. Gold, Characteristic linear sequences and their coset functions, J. SIAM Applied. Math., 14 (1966), 980-985.
Index entries for characteristic functions
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
|
|
FORMULA
|
a(n) = floor((n mod 5)/3). - Gary Detlefs, May 18 2011
a(n+2) = A198517(n+4) - A198517(n+2) + A198517(n). - Bruno Berselli, Nov 02 2011
a(n+4) = abs(a(n) - a(n+1) + a(n+2) - a(n+3)). - Benjamin Knight, May 06 2018
a(n) = (2/5) * (1 + cos(4*(n-4)*Pi/5) + cos(2*(n-3)*Pi/5) + cos(4*(n-3)*Pi/5) + cos(2*(n+1)*Pi/5)). - Wesley Ivan Hurt, Sep 26 2018
G.f.: -x^3*(1+x) / ( (x-1)*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Aug 11 2021
|
|
MATHEMATICA
|
PadRight[{}, 120, {0, 0, 0, 1, 1}] (* Harvey P. Dale, Dec 16 2015 *)
|
|
PROG
|
(PARI) a(n)=(n%5)\3 \\ Charles R Greathouse IV, Jan 16 2017
|
|
CROSSREFS
|
Cf. A198517. Parity of A010891(n+2).
Sequence in context: A288710 A179827 A285133 * A135461 A327219 A274950
Adjacent sequences: A011655 A011656 A011657 * A011659 A011660 A011661
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|