The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198517 Period 5: repeat [1,0,1,0,0]. 5
 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS Unsigned version of A105385; also partial sums of A156174. LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1). FORMULA G.f.: (1+x^2)/(1-x^5). a(n) = a(-n+2) = (1/25)*(-4*(n mod 5) + ((n+1) mod 5) + 6*((n+2) mod 5) - 4*((n+3) mod 5) + 6*((n+4) mod 5)). a(n) + a(n+1) + a(n+2) = A177706(n+4). a(n) - a(n+2) + a(n+4) = A011658(n+2). a(n) = ((n+4)^2 mod 5 + (n+4)^4 mod 5)/2. - Gary Detlefs, May 29 2012 a(n) = ((n+1) mod 5) mod 2. - Paolo P. Lava, Feb 18 2015 a(n) = (2/5) * (1 + cos(2*(n-2)*Pi/5) + cos(4*(n-2)*Pi/5) + cos(2*n*Pi/5) + cos(4*n*Pi/5)). - Wesley Ivan Hurt, Sep 26 2018 MATHEMATICA PadRight[{}, 120, {1, 0, 1, 0, 0}] (* Harvey P. Dale, Dec 09 2012 *) PROG (MAGMA) &cat[[1, 0, 1, 0, 0]^^20]; (MAGMA) [((n+1) mod 5) mod 2: n in [0..100]]; // Vincenzo Librandi, Feb 18 2015 (PARI) a(n)=n%5==0 || n%5==2 \\ Charles R Greathouse IV, Oct 28 2011 CROSSREFS Cf. A079998. See A232990 for another version. Cf. A057354 (partial sums, without initial zeros). Sequence in context: A127829 A127831 A164364 * A105385 A190227 A090626 Adjacent sequences:  A198514 A198515 A198516 * A198518 A198519 A198520 KEYWORD nonn,easy AUTHOR Bruno Berselli, Oct 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 29 09:29 EST 2020. Contains 332355 sequences. (Running on oeis4.)