OFFSET
0,1
COMMENTS
Number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i = 1..n, with k = 2, r = 3, I = {-1, 0, 1, 2}.
a(n) = 1 if n = 5k, a(n) = 0 otherwise. Also, number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i = 1..n, with k = 1, r = 4, I = {0, 1, 2, 3}.
a(n) is also the number of partitions of n with each part being five (a(0) = 1 because the empty partition has no parts to test equality with five). Hence a(n) is also the number of 2-regular graphs on n vertices with each component having girth exactly five. - Jason Kimberley, Oct 02 2011
This sequence is the Euler transformation of A185015. - Jason Kimberley, Oct 02 2011
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..16385
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135.
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 1).
FORMULA
Recurrence: a(n) = a(n-5). G.f.: -1/(x^5 - 1).
a(n) = floor(1/2*cos(2*n*Pi/5) + 1/2). - Gary Detlefs, May 16 2011
a(n) = floor(n/5) - floor((n-1)/5). - Tani Akinari, Oct 21 2012
a(n) = binomial(n - 1, 4) mod 5. - Wesley Ivan Hurt, Oct 06 2014
MAPLE
MATHEMATICA
Table[Mod[Binomial[n - 1, 4], 5], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 06 2014 *)
Table[Boole[Divisible[n, 5]], {n, 0, 99}] (* Alonso del Arte, Nov 29 2014 *)
PadRight[{}, 120, {1, 0, 0, 0, 0}] (* Harvey P. Dale, Jul 11 2023 *)
PROG
(PARI) a(n)=!(n%5) \\ Charles R Greathouse IV, Mar 07 2012
(Magma) [Binomial(n-1, 4) mod 5 : n in [0..100]]; // Wesley Ivan Hurt, Oct 06 2014
(Scheme) (define (A079998 n) (if (zero? (modulo n 5)) 1 0)) ;; Antti Karttunen, Dec 21 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Baltic, Feb 10 2003
EXTENSIONS
More terms from Antti Karttunen, Dec 21 2017
STATUS
approved