login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079998 The characteristic function of the multiples of five. 24
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i = 1..n, with k = 2, r = 3, I = {-1, 0, 1, 2}.

a(n) = 1 if n = 5k, a(n) = 0 otherwise. Also, number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i = 1..n, with k = 1, r = 4, I = {0, 1, 2, 3}.

a(n) is also the number of partitions of n with each part being five (a(0) = 1 because the empty partition has no parts to test equality with five). Hence a(n) is also the number of 2-regular graphs on n vertices with each component having girth exactly five. - Jason Kimberley, Oct 02 2011

This sequence is the Euler transformation of A185015. - Jason Kimberley, Oct 02 2011

REFERENCES

D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..16385

Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135.

Index entries for characteristic functions

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 1).

FORMULA

Recurrence: a(n) = a(n-5). G.f.: -1/(x^5 - 1).

a(n) = (((4*cos(n*2*Pi/5) + 1)^2)/5 - 1)/4 or a(n) = ((8*(sin(n*2*Pi/5))^2 - 5)^2 - 5)/20. - Paolo P. Lava, Aug 24 2006

a(n) = 1-(n^4 mod 5) with n >= 0. a(n) = 1/50*(-9*(n mod 5) + ((n+1) mod 5) + ((n+2) mod 5) + ((n+3) mod 5) + 11*((n+4) mod 5)) with n >= 0. - Paolo P. Lava, Nov 29 2006

a(n) = 1 - A011558(n); a(A008587(n)) = 1; a(A047201(n)) = 0. - Reinhard Zumkeller, Nov 30 2009

a(n) = floor(1/2*cos(2*n*Pi/5) + 1/2). - Gary Detlefs, May 16 2011

a(n) = floor(n/5) - floor((n-1)/5). - Tani Akinari, Oct 21 2012

a(n) = binomial(n - 1, 4) mod 5. - Wesley Ivan Hurt, Oct 06 2014

MAPLE

A079998:=n->binomial(n-1, 4) mod 5: seq(A079998(n), n=0..100); # Wesley Ivan Hurt, Oct 06 2014

MATHEMATICA

Table[Mod[Binomial[n - 1, 4], 5], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 06 2014 *)

Table[Boole[Divisible[n, 5]], {n, 0, 99}] (* Alonso del Arte, Nov 29 2014 *)

PROG

(PARI) a(n)=!(n%5) \\ Charles R Greathouse IV, Mar 07 2012

(MAGMA) [Binomial(n-1, 4) mod 5 : n in [0..100]]; // Wesley Ivan Hurt, Oct 06 2014

(Scheme) (define (A079998 n) (if (zero? (modulo n 5)) 1 0)) ;; Antti Karttunen, Dec 21 2017

CROSSREFS

Cf. A011558, A008587, A002524-A002529, A072827, A072850-A072856, A079955-A080014.

Characteristic function of multiples of g: A000007 (g = 0), A000012 (g = 1), A059841 (g = 2), A079978 (g = 3), A121262 (g = 4), this sequence (g = 5), A079979 (g = 6), A082784 (g = 7). - Jason Kimberley, Oct 14 2011

Sequence in context: A014159 A014184 A014359 * A173856 A027356 A181663

Adjacent sequences:  A079995 A079996 A079997 * A079999 A080000 A080001

KEYWORD

nonn,easy

AUTHOR

Vladimir Baltic, Feb 10 2003

EXTENSIONS

More terms from Antti Karttunen, Dec 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 21:23 EST 2018. Contains 299588 sequences. (Running on oeis4.)