login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079997
Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={0}.
7
1, 0, 1, 2, 9, 24, 57, 140, 376, 1016, 2692, 7020, 18369, 48344, 127465, 335510, 882081, 2319136, 6100393, 16049440, 42220168, 111053856, 292109320, 768373144, 2021186393, 5316647448, 13985104873, 36786882378, 96765680857, 254536684328
OFFSET
0,4
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135
Index entries for linear recurrences with constant coefficients, signature (1, 3, 0, 6, 10, 0, -12, -10, -2, 0, 0, -1, 1, 1).
FORMULA
a(n) = a(n-1)+3*a(n-2)+6*a(n-4)+10*a(n-5)-12*a(n-7)-10*a(n-8)-2*a(n-9)-a(n-12)+a(n-13)+a(n-14)
G.f.: -(x^8+x^7-x^5-2*x^4+x^3-2*x^2-x+1)/(x^14 +x^13 -x^12 -2*x^9 -10*x^8 -12*x^7 +10*x^5 +6*x^4 +3*x^2 +x-1).
MATHEMATICA
LinearRecurrence[{1, 3, 0, 6, 10, 0, -12, -10, -2, 0, 0, -1, 1, 1}, {1, 0, 1, 2, 9, 24, 57, 140, 376, 1016, 2692, 7020, 18369, 48344}, 40] (* Harvey P. Dale, Nov 27 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Baltic, Feb 17 2003
STATUS
approved