Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jul 31 2015 12:22:52
%S 1,0,1,2,9,24,57,140,376,1016,2692,7020,18369,48344,127465,335510,
%T 882081,2319136,6100393,16049440,42220168,111053856,292109320,
%U 768373144,2021186393,5316647448,13985104873,36786882378,96765680857,254536684328
%N Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={0}.
%D D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
%H Alois P. Heinz, <a href="/A079997/b079997.txt">Table of n, a(n) for n = 0..1000</a>
%H Vladimir Baltic, <a href="http://pefmath.etf.rs/vol4num1/AADM-Vol4-No1-119-135.pdf">On the number of certain types of strongly restricted permutations</a>, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135
%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, 0, 6, 10, 0, -12, -10, -2, 0, 0, -1, 1, 1).
%F a(n) = a(n-1)+3*a(n-2)+6*a(n-4)+10*a(n-5)-12*a(n-7)-10*a(n-8)-2*a(n-9)-a(n-12)+a(n-13)+a(n-14)
%F G.f.: -(x^8+x^7-x^5-2*x^4+x^3-2*x^2-x+1)/(x^14 +x^13 -x^12 -2*x^9 -10*x^8 -12*x^7 +10*x^5 +6*x^4 +3*x^2 +x-1).
%t LinearRecurrence[{1,3,0,6,10,0,-12,-10,-2,0,0,-1,1,1},{1,0,1,2,9,24,57,140,376,1016,2692,7020,18369,48344},40] (* _Harvey P. Dale_, Nov 27 2013 *)
%Y Cf. A002524-A002529, A072827, A072850-A072856, A079955-A080014.
%Y Column k=3 of A259776.
%Y Cf. A260081.
%K nonn,easy
%O 0,4
%A _Vladimir Baltic_, Feb 17 2003