login
A353629
a(n) = 1 if n is a product of an even number of distinct primes, otherwise 0.
4
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0
OFFSET
1
FORMULA
a(n) = 1 iff A008683(n) = +1 (if the Möbius mu-function obtains a positive value), otherwise 0.
a(n) = A008966(n) * A065043(n).
a(n) = A008966(n) - A252233(n).
a(n) = a(A046523(n)).
a(n) >= A280710(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/Pi^2 (A104141). - Amiram Eldar, Jul 24 2022
MATHEMATICA
a[n_] := If[MoebiusMu[n] == 1, 1, 0]; Array[a, 100] (* Amiram Eldar, Jul 24 2022 *)
PROG
(PARI) A353629(n) = (1==moebius(n));
CROSSREFS
Characteristic function of A030229.
After n=1 differs for the next time from A280710 at n=210, where a(210) = 1, while A280710(210) = 0.
Sequence in context: A014359 A079998 A356170 * A339661 A374471 A320656
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 02 2022
STATUS
approved