login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353632
Even bisection of A353630: Arithmetic derivative of primorial base exp-function, reduced modulo 4, computed for even numbers.
4
0, 1, 2, 1, 0, 3, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 2, 3, 0, 3, 2, 3, 0, 1, 2, 1, 0, 1, 2, 3, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 3, 0, 1, 2, 1, 0, 1, 2, 3, 0, 3, 2, 3, 0, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 2, 3, 0, 3, 2, 3, 0, 1, 2, 1, 0, 1, 2, 3, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1
OFFSET
0,3
FORMULA
a(n) = A353630(2*n) = A010873(A327860(2*n)).
A000035(a(n)) = A000035(n).
PROG
(PARI)
A353630(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); ((s*m)%4); };
A353632(n) = A353630(n+n);
CROSSREFS
Even bisection of A353630. A353631 gives the odd bisection.
Cf. also A353487, A353642.
Sequence in context: A356582 A320839 A094314 * A365713 A348328 A036864
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, May 01 2022
STATUS
approved