login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A353633
a(n) = 1 if A351546(n) is a unitary divisor of n, otherwise 0. Here A351546(n) is the largest unitary divisor of sigma(n) coprime with A003961(n).
5
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
COMMENTS
For all known triperfect numbers, n = 1..6, a(A005820(n)) = 1.
For all known 5-multiperfect numbers, n = 1..65, a(A046060(n)) = 1.
For all known multiperfects m such that sigma(m) is also multiperfect, n = 1..23, a(A323653(n)) = 1.
Observation: Apparently, for no other odd terms than 1 of A006872, a(2*A006872(n)) = 1.
FORMULA
a(n) = [1 == A353668(n)] * [1 == gcd(A351546(n),A353667(n))], where [ ] are the Iverson brackets.
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A351546(n) = { my(f=factor(sigma(n)), u=A003961(n)); prod(k=1, #f~, f[k, 1]^((0!=(u%f[k, 1]))*f[k, 2])); };
A353633(n) = { my(u=A351546(n)); (!(n%u) && 1==gcd(u, n/u)); };
CROSSREFS
Characteristic function of A351551.
Sequence in context: A016335 A016373 A281815 * A205988 A167700 A010057
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 04 2022
STATUS
approved