login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A167700
Number of partitions of n into distinct odd squares.
13
1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,131
COMMENTS
A167701 and A167702 give record values and where they occur: A167701(n)=a(A167702(n)) and a(m) < A167701(n) for m < A167702(n);
a(A167703(n)) = 0.
FORMULA
a(n) = f(n,1,8) with f(x,y,z) = if x<y then 0^x else f(x-y,y+z,z+8) + f(x,y+z,z+8).
G.f.: Product_{k>=0} (1 + x^((2*k+1)^2)). - Ilya Gutkovskiy, Jan 11 2017
a(n) ~ exp(3 * 2^(-7/3) * Pi^(1/3) * (sqrt(2)-1)^(2/3) * Zeta(3/2)^(2/3) * n^(1/3)) * (sqrt(2)-1)^(1/3) * Zeta(3/2)^(1/3) / (2^(7/6) * sqrt(3) * Pi^(1/3) * n^(5/6)). - Vaclav Kotesovec, Sep 18 2017
EXAMPLE
a(50) = #{49+1} = 1;
a(130) = #{121+9, 81+49} = 2.
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1 + x^((2*k-1)^2), {k, 1, Floor[Sqrt[nmax]/2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 18 2017 *)
PROG
(Haskell)
a167700 = p a016754_list where
p _ 0 = 1
p (q:qs) m = if m < q then 0 else p qs (m - q) + p qs m
-- Reinhard Zumkeller, Mar 15 2014
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Nov 09 2009
STATUS
approved