login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167661
Number of partitions of n into odd squares.
11
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 11, 11, 12, 12, 13, 13, 13, 13, 14, 15, 15, 16, 16, 17, 17, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 23, 24, 25, 25, 26, 26, 28, 28, 29, 30, 31
OFFSET
0,10
COMMENTS
A167662 and A167663 give record values and where they occur: A167662(n)=a(A167663(n)) and a(m) < A167662(n) for m < A167663(n).
LINKS
FORMULA
a(n) = f(n,1,8) with f(x,y,z) = if x<y then 0^x else f(x-y,y,z)+f(x,y+z,z+8).
G.f.: G = 1/Product_{i>=1}(1-x^{(2i-1)^2}). - Emeric Deutsch , Jan 26 2016
a(n) ~ exp(3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 4) * Zeta(3/2)^(1/3) / (4 * sqrt(3) * Pi^(1/3) * n^(5/6)). - Vaclav Kotesovec, Sep 18 2017
EXAMPLE
a(10)=#{9+1,1+1+1+1+1+1+1+1+1+1}=2;
a(20)=#{9+9+1+1,9+1+1+1+1+1+1+1+1+1+1+1,20x1}=3;
a(30)=#{25+1+1+1+1+1,9+9+9+1+1+1,9+9+12x1,9+21x1,30x1}=5.
MAPLE
g := 1/mul(1-x^((2*i-1)^2), i = 1 .. 150): gser := series(g, x = 0, 105): seq(coeff(gser, x, n), n = 0 .. 100);
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/(1 - x^((2*k-1)^2)), {k, 1, Floor[Sqrt[nmax]/2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 18 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 08 2009
STATUS
approved