login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A167661
Number of partitions of n into odd squares.
11
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 11, 11, 12, 12, 13, 13, 13, 13, 14, 15, 15, 16, 16, 17, 17, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 23, 24, 25, 25, 26, 26, 28, 28, 29, 30, 31
OFFSET
0,10
COMMENTS
A167662 and A167663 give record values and where they occur: A167662(n)=a(A167663(n)) and a(m) < A167662(n) for m < A167663(n).
LINKS
FORMULA
a(n) = f(n,1,8) with f(x,y,z) = if x<y then 0^x else f(x-y,y,z)+f(x,y+z,z+8).
G.f.: G = 1/Product_{i>=1}(1-x^{(2i-1)^2}). - Emeric Deutsch , Jan 26 2016
a(n) ~ exp(3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 4) * Zeta(3/2)^(1/3) / (4 * sqrt(3) * Pi^(1/3) * n^(5/6)). - Vaclav Kotesovec, Sep 18 2017
EXAMPLE
a(10)=#{9+1,1+1+1+1+1+1+1+1+1+1}=2;
a(20)=#{9+9+1+1,9+1+1+1+1+1+1+1+1+1+1+1,20x1}=3;
a(30)=#{25+1+1+1+1+1,9+9+9+1+1+1,9+9+12x1,9+21x1,30x1}=5.
MAPLE
g := 1/mul(1-x^((2*i-1)^2), i = 1 .. 150): gser := series(g, x = 0, 105): seq(coeff(gser, x, n), n = 0 .. 100);
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/(1 - x^((2*k-1)^2)), {k, 1, Floor[Sqrt[nmax]/2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 18 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 08 2009
STATUS
approved