The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167661 Number of partitions of n into odd squares. 11
 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 11, 11, 12, 12, 13, 13, 13, 13, 14, 15, 15, 16, 16, 17, 17, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 23, 24, 25, 25, 26, 26, 28, 28, 29, 30, 31 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 COMMENTS A167662 and A167663 give record values and where they occur: A167662(n)=a(A167663(n)) and a(m) < A167662(n) for m < A167663(n). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from R. Zumkeller) FORMULA a(n) = f(n,1,8) with f(x,y,z) = if x=1}(1-x^{(2i-1)^2}). - Emeric Deutsch , Jan 26 2016 a(n) ~ exp(3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 4) * Zeta(3/2)^(1/3) / (4 * sqrt(3) * Pi^(1/3) * n^(5/6)). - Vaclav Kotesovec, Sep 18 2017 EXAMPLE a(10)=#{9+1,1+1+1+1+1+1+1+1+1+1}=2; a(20)=#{9+9+1+1,9+1+1+1+1+1+1+1+1+1+1+1,20x1}=3; a(30)=#{25+1+1+1+1+1,9+9+9+1+1+1,9+9+12x1,9+21x1,30x1}=5. MAPLE g := 1/mul(1-x^((2*i-1)^2), i = 1 .. 150): gser := series(g, x = 0, 105): seq(coeff(gser, x, n), n = 0 .. 100); MATHEMATICA nmax = 100; CoefficientList[Series[Product[1/(1 - x^((2*k-1)^2)), {k, 1, Floor[Sqrt[nmax]/2] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 18 2017 *) CROSSREFS Cf. A001156, A000009, A101412, A016754, A167700. Sequence in context: A279951 A279224 A167383 * A187187 A300358 A102682 Adjacent sequences:  A167658 A167659 A167660 * A167662 A167663 A167664 KEYWORD nonn AUTHOR Reinhard Zumkeller, Nov 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 16:49 EDT 2021. Contains 347531 sequences. (Running on oeis4.)