login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300358
Array read by antidiagonals: T(m,n) = total domination number of the grid graph P_m X P_n.
6
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 6, 6, 8, 8, 6, 6, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 6, 6, 8, 10, 10, 10, 10, 8, 6, 6, 6, 8, 9, 12, 12, 12, 12, 12, 9, 8, 6, 6, 8, 10, 12, 14, 14, 14, 14, 12, 10, 8, 6, 7, 8, 11, 14, 15, 16, 15, 16, 15, 14, 11, 8, 7
OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..435 (first 29 antidiagonals)
Alexandre Talon, Intensive use of computing resources for dominations in grids and other combinatorial problems, arXiv:2002.11615 [cs.DM], 2020. See Sec. 2.3.2.
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Total Domination Number
EXAMPLE
Table begins:
=======================================================
m\n| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
---+---------------------------------------------------
1 | 1 2 2 2 3 4 4 4 5 6 6 6 7 8 8 8 ...
2 | 2 2 2 4 4 4 6 6 6 8 8 8 10 10 10 12 ...
3 | 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
4 | 2 4 4 6 8 8 10 12 12 14 14 16 18 18 20 20 ...
5 | 3 4 5 8 9 10 12 14 15 16 18 20 21 22 24 26 ...
6 | 4 4 6 8 10 12 14 16 18 20 20 24 24 26 28 30 ...
7 | 4 6 7 10 12 14 15 18 20 22 24 26 27 30 32 34 ...
8 | 4 6 8 12 14 16 18 20 22 24 28 30 32 34 36 38 ...
9 | 5 6 9 12 15 18 20 22 25 28 30 32 35 38 40 42 ...
...
CROSSREFS
Rows 1..2 are A004524(n+2), A302402.
Main diagonal is A302488.
Sequence in context: A167383 A167661 A187187 * A102682 A116371 A103377
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 20 2018
STATUS
approved