login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302488
Total domination number of the n X n grid graph.
4
1, 2, 3, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 72, 81, 90, 99, 110, 121, 132, 143, 156, 169, 182, 195, 210, 225, 240, 255, 272, 289, 306, 323, 342, 361, 380, 399, 420, 441, 462, 483, 506, 529, 552, 575, 600, 625, 650, 675, 702, 729, 756, 783, 812, 841, 870, 899, 930
OFFSET
2,2
COMMENTS
Extended to a(1) using the formula/recurrence.
LINKS
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Total Domination Number
FORMULA
a(n) = ((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8.
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6).
G.f.: (1 + 2*x^3 - x^4)/((1 - x)^3*(1 + x + x^2 + x^3)).
MATHEMATICA
Table[(-1 + (-1)^n + 2 n (2 + n) + 4 Sin[n Pi/2])/8, {n, 20}]
LinearRecurrence[{2, -1, 0, 1, -2, 1}, {1, 2, 3, 6, 9, 12}, 20]
CoefficientList[Series[(-1 - 2 x^3 + x^4)/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x]
PROG
(PARI) for(n=1, 30, print1(round(((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8), ", ")) \\ G. C. Greubel, Apr 09 2018
(Magma) R:=RealField(); [Round(((-1)^n + 2*n*(n + 2) + 4*Sin(n*Pi(R)/2) - 1)/8): n in [1..30]]; // G. C. Greubel, Apr 09 2018
CROSSREFS
Main diagonal of A300358.
Cf. A303142.
Sequence in context: A145441 A308012 A077121 * A348448 A140495 A174873
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 08 2018
STATUS
approved