login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total domination number of the n X n grid graph.
4

%I #14 Sep 08 2022 08:46:21

%S 1,2,3,6,9,12,15,20,25,30,35,42,49,56,63,72,81,90,99,110,121,132,143,

%T 156,169,182,195,210,225,240,255,272,289,306,323,342,361,380,399,420,

%U 441,462,483,506,529,552,575,600,625,650,675,702,729,756,783,812,841,870,899,930

%N Total domination number of the n X n grid graph.

%C Extended to a(1) using the formula/recurrence.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotalDominationNumber.html">Total Domination Number</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1).

%F a(n) = ((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8.

%F a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6).

%F G.f.: (1 + 2*x^3 - x^4)/((1 - x)^3*(1 + x + x^2 + x^3)).

%t Table[(-1 + (-1)^n + 2 n (2 + n) + 4 Sin[n Pi/2])/8, {n, 20}]

%t LinearRecurrence[{2, -1, 0, 1, -2, 1}, {1, 2, 3, 6, 9, 12}, 20]

%t CoefficientList[Series[(-1 - 2 x^3 + x^4)/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x]

%o (PARI) for(n=1,30, print1(round(((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8), ", ")) \\ _G. C. Greubel_, Apr 09 2018

%o (Magma) R:=RealField(); [Round(((-1)^n + 2*n*(n + 2) + 4*Sin(n*Pi(R)/2) - 1)/8): n in [1..30]]; // _G. C. Greubel_, Apr 09 2018

%Y Main diagonal of A300358.

%Y Cf. A303142.

%K nonn

%O 2,2

%A _Eric W. Weisstein_, Apr 08 2018