login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302485 Primes p not of the form k^2+s where k > 1 and 1 <= s < (k+1)^2, such that q = k^4+s is prime. 0
2, 3, 13, 19, 73, 103, 113, 131, 223, 293, 313, 461, 761, 863, 1013, 1069, 1171, 1223, 2293, 2711, 2887, 2903, 4583, 5623, 6949, 7151, 7873, 8563, 8803, 12413, 13613, 16703, 17393, 22013, 24733, 28723 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

No more terms <= 10^8. Is this sequence finite?

LINKS

Table of n, a(n) for n=1..36.

PROG

(PARI) upto(n) = {my(res = List([2, 3]), b); forprime(p = 5, n, b = 0; for(k = ceil(sqrt(p / 2 + 1/4) - 0.5), sqrtint(p-1), if(isprime(k^4 + p - k^2), b = 1; next(1))); if(!b, listput(res, p))); res}

CROSSREFS

Primes not in A124598.

Sequence in context: A080359 A193507 A103087 * A135118 A274905 A234366

Adjacent sequences:  A302482 A302483 A302484 * A302486 A302487 A302488

KEYWORD

nonn,more

AUTHOR

David A. Corneth, Apr 08 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 14:52 EDT 2020. Contains 333314 sequences. (Running on oeis4.)