|
|
A302485
|
|
Primes p not of the form k^2+s where k > 1 and 1 <= s < (k+1)^2, such that q = k^4+s is prime.
|
|
0
|
|
|
2, 3, 13, 19, 73, 103, 113, 131, 223, 293, 313, 461, 761, 863, 1013, 1069, 1171, 1223, 2293, 2711, 2887, 2903, 4583, 5623, 6949, 7151, 7873, 8563, 8803, 12413, 13613, 16703, 17393, 22013, 24733, 28723
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
No more terms <= 10^8. Is this sequence finite?
|
|
LINKS
|
Table of n, a(n) for n=1..36.
|
|
PROG
|
(PARI) upto(n) = {my(res = List([2, 3]), b); forprime(p = 5, n, b = 0; for(k = ceil(sqrt(p / 2 + 1/4) - 0.5), sqrtint(p-1), if(isprime(k^4 + p - k^2), b = 1; next(1))); if(!b, listput(res, p))); res}
|
|
CROSSREFS
|
Primes not in A124598.
Sequence in context: A080359 A193507 A103087 * A135118 A274905 A234366
Adjacent sequences: A302482 A302483 A302484 * A302486 A302487 A302488
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
David A. Corneth, Apr 08 2018
|
|
STATUS
|
approved
|
|
|
|