The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302485 Primes p not of the form k^2+s where k > 1 and 1 <= s < (k+1)^2, such that q = k^4+s is prime. 0
 2, 3, 13, 19, 73, 103, 113, 131, 223, 293, 313, 461, 761, 863, 1013, 1069, 1171, 1223, 2293, 2711, 2887, 2903, 4583, 5623, 6949, 7151, 7873, 8563, 8803, 12413, 13613, 16703, 17393, 22013, 24733, 28723 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS No more terms <= 10^8. Is this sequence finite? LINKS PROG (PARI) upto(n) = {my(res = List([2, 3]), b); forprime(p = 5, n, b = 0; for(k = ceil(sqrt(p / 2 + 1/4) - 0.5), sqrtint(p-1), if(isprime(k^4 + p - k^2), b = 1; next(1))); if(!b, listput(res, p))); res} CROSSREFS Primes not in A124598. Sequence in context: A080359 A193507 A103087 * A135118 A274905 A234366 Adjacent sequences: A302482 A302483 A302484 * A302486 A302487 A302488 KEYWORD nonn,more AUTHOR David A. Corneth, Apr 08 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 10:36 EDT 2023. Contains 361689 sequences. (Running on oeis4.)