login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124598
Primes p of the form k^2+s where k > 1 and 1 <= s < (k+1)^2, such that q = k^4+s is prime and larger than p.
3
5, 7, 11, 17, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 107, 109, 127, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 307, 311, 331, 337, 347
OFFSET
1,1
COMMENTS
The terms of this sequence illustrate a special case of the conjecture from A126769.
EXAMPLE
5 = 2^2+1 is prime, 17 = 2^4+1 is a larger prime and 1 < 3^2, hence 5 is a term.
29 = 4^2+13 is prime, 269 = 4^4+13 is a larger prime and 13 < 5^2, hence 29 is a term.
805499 = 897^2+890 is prime, 647395643771 = 897^4+890 is a larger prime and 890 < 898^2, hence 805499 is a term.
Prime number 19 has the form k^2+s with s < (k+1)^2 in two ways, as 3^2+10 and 4^2+3. Neither 3^4+10 = 91 nor 4^4+3 = 259 is prime, hence 19 is not in the sequence.
PROG
(PARI) m=19; v=[]; for(k=2, m, for(s=1, (k+1)^2-1, if((p=k^2+s)<m^2&&isprime(p)&&(q=k^4+s)>p&&isprime(q), v=concat(v, p)))); print(Set(v)) \\
(PARI) upto(n)=my(res = List()); forprime(p = 5, n, for(k = ceil(sqrt(p / 2 + 1/4) - 0.5), sqrtint(p-1), if(isprime(k^4 + p - k^2), listput(res, p); next(2)))); res \\ David A. Corneth, Apr 08 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tomas Xordan, Mar 02 2007
EXTENSIONS
Edited, corrected and extended by Klaus Brockhaus, Mar 05 2007
STATUS
approved