|
|
A302484
|
|
Number of Truchet tilings of an n X n square up to rotation and reflection.
|
|
0
|
|
|
1, 1, 43, 32896, 536911936, 140737496743936, 590295810401655390208, 39614081257132309534260330496, 42535295865117307944451040976113238016, 730750818665451459101843020821051317142553624576, 200867255532373784442745261543437606940418017880259520626688
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A Truchet tile is a unit square split along the diagonal into two triangles, one black and the other white. It has four orientations, with the white half at the NW, NE, SE, and SW. There are 4^(n^2) ways to tile an n X n square with Truchet tiles if rotations and reflections are counted as different. The number of tilings up to symmetry can be found using Burnside's lemma.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (4^(n^2) + 5*4^(n^2/2) + 2*4^(n^2/4)) / 8 if n is even.
a(n) = (4^(n^2) + 2*4^(n^2/2)) / 8 if n is odd.
|
|
MATHEMATICA
|
f[n_]:=If[EvenQ[n], (4^(n^2) + 5 4^(n^2/2) + 2 4^(n^2/4))/8, (4^(n^2) + 2 4^(n^2/2))/8]; Join[{1}, Array[f, 60]] (* Vincenzo Librandi, Apr 09 2018 *)
|
|
PROG
|
(Python) def a(n): return (4**(n*n)+2**(n*n+1))//8 if n%2 else (4**(n*n)+5*4**(n*n//2)+2*4**(n*n//4))//8
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|