login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262856
Numerators of the Nielsen-Jacobsthal series leading to Euler's constant.
4
1, 43, 20431, 2150797323119, 9020112358835722225404403, 51551916515442115079024221439308876243677598340510141
OFFSET
1,2
COMMENTS
gamma = 1 - 1/12 - 43/420 - 20431/240240 - 2150797323119/36100888223400 - ..., see formula (36) in the reference below.
LINKS
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only. Journal of Number Theory (Elsevier), vol. 158, pp. 365-396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.
FORMULA
a(n) = n * Sum_{k = 2^n + 1 .. 2^(n + 1)} (-1)^(k + 1)/k.
EXAMPLE
Numerators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
MATHEMATICA
a[n_] := Numerator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
PROG
(PARI) a(n) = numerator(n*sum(k=2^n + 1, 2^(n + 1), (-1)^(k + 1)/k));
(Magma) [Numerator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
(GAP) List(List([1..6], n->n*Sum([2^n+1..2^(n+1)], k->(-1)^(k+1)/k)), NumeratorRat); # Muniru A Asiru, Oct 29 2018
CROSSREFS
Cf. A075266, A075267, A001620, A195189, A002657, A002790, A262235, A075266, A006953, A001067, A262858 (denominators of this series).
Sequence in context: A361892 A356203 A184144 * A302484 A177488 A262648
KEYWORD
frac,nonn
AUTHOR
STATUS
approved