

A075266


Numerator of the coefficient of x^n in log(log(1x)/x).


14



1, 5, 1, 251, 19, 19087, 751, 1070017, 2857, 26842253, 434293, 703604254357, 8181904909, 1166309819657, 5044289, 8092989203533249, 5026792806787, 12600467236042756559, 69028763155644023, 8136836498467582599787
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A series with these numerators leads to Euler's constant: gamma = 1  1/4  5/72  1/32  251/14400  19/1728  19087/2540160  ..., see references [Blagouchine] below, as well as A262235.  Iaroslav V. Blagouchine, Sep 15 2015


LINKS

Robert Israel, Table of n, a(n) for n = 1..447
Iaroslav V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to 1/pi, Journal of Mathematical Analysis and Applications (Elsevier), 2016. arXiv version, arXiv:1408.3902 [math.NT], 20142016
Iaroslav V. Blagouchine, Expansions of generalized Euler's constants into the series of polynomials in 1/pi^2 and into the formal enveloping series with rational coefficients only, Journal of Number Theory (Elsevier), vol. 158, pp. 365396, 2016. arXiv version, arXiv:1501.00740 [math.NT], 2015.


MAPLE

S:= series(log(log(1x)/x), x, 51):
seq(numer(coeff(S, x, j)), j=1..50); # Robert Israel, May 17 2016


MATHEMATICA

Numerator[ CoefficientList[ Series[ Log[ Log[1  x]/x], {x, 0, 20}], x]]


CROSSREFS

Cf. A053657, A075264, A075267, A262235.
Sequence in context: A293572 A294257 A162227 * A094096 A009826 A255855
Adjacent sequences: A075263 A075264 A075265 * A075267 A075268 A075269


KEYWORD

frac,nonn


AUTHOR

Paul D. Hanna, Sep 15 2002


EXTENSIONS

Edited by Robert G. Wilson v, Sep 17 2002


STATUS

approved



