The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075268 Trajectory of 442 under the Reverse and Add! operation carried out in base 2. 11
 442, 629, 1326, 2259, 5508, 6585, 11628, 15129, 24912, 26259, 52038, 77337, 155394, 221931, 442374, 639009, 1179738, 1917027, 3539130, 5062869, 10666542, 18285939, 45369156, 54513657, 96444396, 125792217, 207562704, 220034931 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS 22, 77 and 442 are the first terms of A075252. The base 2 trajectory of 442 is completely different from the trajectories of 22 (cf. A061561) and 77 (cf. A075253). Using the formula given below one can prove that it does not contain a palindrome. lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 1. lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 0. Interleaving of 2*A177420, A177421, 6*A177422, 3*A177423. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2 FORMULA a(0), ..., a(28) as above; a(29) = 703932681; a(30) =1310348526; a(31) = 2309980455; a(32) = 6143702712; a(33) = 7131271077; a(34) = 12699398352; a(35) = 13441412493; for n > 35 and n = 0 (mod 4): a(n) = 3*2^(2*k+23)-12576771*2^k where k = (n-16)/4; n = 1 (mod 4): a(n) = 3*2^(2*k+23)+12576771*2^k-3 where k = (n-17)/4; n = 2 (mod 4): a(n) = 6*2^(2*k+23)-12576771*2^k where k = (n-18)/4; n = 3 (mod 4): a(n) = 6*2^(2*k+23)+37730313*2^k-3 where k = (n-19)/4. G.f.: (442+629*x+372*x^3+1530*x^4-192*x^5-2244*x^6-852*x^7-3784*x^8-8090*x^9 +5046*x^10+29034*x^11+47016*x^12+54354*x^13+79152*x^14+70254*x^15+65196*x^16 +358986*x^17+724128*x^18+334026*x^19+2081820*x^20+6043662*x^21+18678462*x^22+8601966*x^23 -23147244*x^24-15039648*x^25 -31927752*x^26-67877562*x^27+43880046*x^28+297766074*x^29 +396480108*x^30+734881086*x^31+3072255774*x^32+1018370430*x^33-3939844260*x^34-4608944376*x^35 -6616834356*x^36-3107825028*x^37+6655931736*x^38+7777900872*x^39+484428384*x^40 -2233413600*x^41-62899200*x^42+188697600*x^43) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)). G.f. for the sequence starting at a(36): 3*x^36*(8455782368+8724086815*x -8321630144*x^2-8589934590*x^3-17045716960*x^4-18118934750*x^5+16911564736*x^6 +17984782524*x^7) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)). a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013 EXAMPLE 442 (decimal) = 110111010 -> 110111010 + 010111011 = 1001110101 = 629 (decimal). MATHEMATICA NestWhileList[# + IntegerReverse[#, 2] &, 442,  # != IntegerReverse[#, 2] &, 1, 27] (* Robert Price, Oct 18 2019 *) PROG (PARI) trajectory(n, steps) = {local(v, k=n); for(j=0, steps, print1(k, ", "); v=binary(k); k+=sum(j=1, #v, 2^(j-1)*v[j]))}; trajectory(442, 28); (MAGMA) trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a, base)), base); Append(~S, a); end for; return S; end function; trajectory(442, 28, 2); (Haskell) a075268 n = a075268_list !! n a075268_list = iterate a055944 442  -- Reinhard Zumkeller, Apr 21 2013 CROSSREFS Cf. A058042 (trajectory of 22 in base 2, written in base 2), A061561 (trajectory of 22 in base 2), A075253 (trajectory of 77 in base 2), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n). Cf. A177420 (a(4*n)/2), A177421 (a(4*n+1)), A177422 (a(4*n+2)/6), A177423 (a(4*n+3)/3). Sequence in context: A110996 A013769 A013899 * A332531 A158322 A031720 Adjacent sequences:  A075265 A075266 A075267 * A075269 A075270 A075271 KEYWORD base,nonn AUTHOR Klaus Brockhaus, Sep 11 2002 EXTENSIONS Comment edited and three comments added, g.f. edited, PARI program revised, MAGMA program and crossrefs added by Klaus Brockhaus, May 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 16:13 EDT 2020. Contains 337344 sequences. (Running on oeis4.)