login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061561 Trajectory of 22 under the Reverse and Add! operation carried out in base 2. 22
22, 35, 84, 105, 180, 225, 360, 405, 744, 837, 1488, 1581, 3024, 3213, 6048, 6237, 12192, 12573, 24384, 24765, 48960, 49725, 97920, 98685, 196224, 197757, 392448, 393981, 785664, 788733, 1571328, 1574397, 3144192, 3150333, 6288384, 6294525 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Sequence A058042 written in base 10. 22 is the smallest number whose base 2 trajectory does not contain a palindrome.

lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 0.

lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 1. - Klaus Brockhaus, Dec 09 2009

LINKS

T. D. Noe, Table of n, a(n) for n=0..500

Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2

Index entries for sequences related to Reverse and Add!

FORMULA

a(0) = 22; a(1) = 35; for n > 1 and n = 2 (mod 4): a(n) = 6*2^(2*k)-3*2^k where k = (n+6)/4; n = 3 (mod 4): a(n) = 6*2^(2*k)+3*2^k-3 where k = (n+5)/4; n = 0 (mod 4): a(n) = 12*2^(2*k)-3*2^k where k = (n+4)/4; n = 1 (mod 4): a(n) = 12*2^(2*k)+9*2^k-3 where k = (n+3)/4. [Klaus Brockhaus, Sep 05 2002]

G.f.: (22+35*x+18*x^2-72*x^4-90*x^5-48*x^6-60*x^7+80*x^8+112*x^9) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)). [Klaus Brockhaus, Sep 05 2002, edited Dec 09 2009]

a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013

MATHEMATICA

binRA[n_] := If[Reverse[IntegerDigits[n, 2]] == IntegerDigits[n, 2], n, FromDigits[Reverse[IntegerDigits[n, 2]], 2] + n]; NestList[binRA, 22, 100] (* Adapted from Ben Branman's code for A213012, Alonso del Arte, Jun 02 2012 *)

PROG

(ARIBAS) m := 22; stop := 36; c := 0; while c < stop do write(m, ", "); k := bit_length(m); rev := 0; for i := 0 to k-1 do if bit_test(m, i) then rev := bit_set(rev, k-1-i); end; end; inc(c); m := m+rev; end; .

(PARI) {m=22; stop=36; c=0; while(c<stop, print1(k=m, ", "); rev=0; while(k>0, d=divrem(k, 2); k=d[1]; rev=2*rev+d[2]); c++; m=m+rev)}

(MAGMA) trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a, base)), base); Append(~S, a); end for; return S; end function; trajectory(22, 35, 2); // Klaus Brockhaus, Dec 09 2009

(Haskell)

a061561 n = a061561_list !! n

a061561_list = iterate a055944 22  -- Reinhard Zumkeller, Apr 21 2013

CROSSREFS

Cf. A035522 (trajectory of 1 in base 2), A058042 (trajectory of 22 in base 2, written in base 2), A075253 (trajectory of 77 in base 2), A075268 (trajectory of 442 in base 2), A077076 (trajectory of 537 in base 2), A077077 (trajectory of 775 in base 2), A066059 (trajectory of n in base 2 (presumably) does not reach a palindrome), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n), A075153 (trajectory of 318 in base 4).

Cf. A171470 (a(4*n)/2), A171471 (a(4*n+1)), A171472 (a(4*n+2)/12), A171473 (a(4*n+3)/3).

Sequence in context: A159518 A245365 A100039 * A233404 A167277 A084141

Adjacent sequences:  A061558 A061559 A061560 * A061562 A061563 A061564

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane, May 18 2001

EXTENSIONS

More terms from Klaus Brockhaus, May 27 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 15:41 EDT 2020. Contains 334748 sequences. (Running on oeis4.)