login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061561
Trajectory of 22 under the Reverse and Add! operation carried out in base 2.
23
22, 35, 84, 105, 180, 225, 360, 405, 744, 837, 1488, 1581, 3024, 3213, 6048, 6237, 12192, 12573, 24384, 24765, 48960, 49725, 97920, 98685, 196224, 197757, 392448, 393981, 785664, 788733, 1571328, 1574397, 3144192, 3150333, 6288384, 6294525
OFFSET
0,1
COMMENTS
Sequence A058042 written in base 10. 22 is the smallest number whose base 2 trajectory does not contain a palindrome.
lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 0.
lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 1. - Klaus Brockhaus, Dec 09 2009
FORMULA
a(0) = 22; a(1) = 35; for n > 1 and n = 2 (mod 4): a(n) = 6*2^(2*k)-3*2^k where k = (n+6)/4; n = 3 (mod 4): a(n) = 6*2^(2*k)+3*2^k-3 where k = (n+5)/4; n = 0 (mod 4): a(n) = 12*2^(2*k)-3*2^k where k = (n+4)/4; n = 1 (mod 4): a(n) = 12*2^(2*k)+9*2^k-3 where k = (n+3)/4. [Klaus Brockhaus, Sep 05 2002]
G.f.: (22+35*x+18*x^2-72*x^4-90*x^5-48*x^6-60*x^7+80*x^8+112*x^9) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)). [Klaus Brockhaus, Sep 05 2002, edited Dec 09 2009]
a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013
MATHEMATICA
binRA[n_] := If[Reverse[IntegerDigits[n, 2]] == IntegerDigits[n, 2], n, FromDigits[Reverse[IntegerDigits[n, 2]], 2] + n]; NestList[binRA, 22, 100] (* Adapted from Ben Branman's code for A213012, Alonso del Arte, Jun 02 2012 *)
PROG
(ARIBAS) m := 22; stop := 36; c := 0; while c < stop do write(m, ", "); k := bit_length(m); rev := 0; for i := 0 to k-1 do if bit_test(m, i) then rev := bit_set(rev, k-1-i); end; end; inc(c); m := m+rev; end; .
(PARI) {m=22; stop=36; c=0; while(c<stop, print1(k=m, ", "); rev=0; while(k>0, d=divrem(k, 2); k=d[1]; rev=2*rev+d[2]); c++; m=m+rev)}
(Magma) trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a, base)), base); Append(~S, a); end for; return S; end function; trajectory(22, 35, 2); // Klaus Brockhaus, Dec 09 2009
(Haskell)
a061561 n = a061561_list !! n
a061561_list = iterate a055944 22 -- Reinhard Zumkeller, Apr 21 2013
CROSSREFS
Cf. A035522 (trajectory of 1 in base 2), A058042 (trajectory of 22 in base 2, written in base 2), A075253 (trajectory of 77 in base 2), A075268 (trajectory of 442 in base 2), A077076 (trajectory of 537 in base 2), A077077 (trajectory of 775 in base 2), A066059 (trajectory of n in base 2 (presumably) does not reach a palindrome), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n), A075153 (trajectory of 318 in base 4).
Cf. A171470 (a(4*n)/2), A171471 (a(4*n+1)), A171472 (a(4*n+2)/12), A171473 (a(4*n+3)/3).
Sequence in context: A159518 A245365 A100039 * A233404 A167277 A084141
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, May 18 2001
EXTENSIONS
More terms from Klaus Brockhaus, May 27 2001
STATUS
approved