OFFSET
0,2
COMMENTS
It is believed that n = 196 is the smallest integer which never reaches a palindrome.
LINKS
EXAMPLE
19 -> 19 + 91 = 110 -> 110 + 011 = 121, so a(19) = 121.
MATHEMATICA
tol = 1000; r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; palQ[n_] := n == r[n]; ar[n_] := n + r[n]; Table[k = 0; If[palQ[n], n = ar[n]; k = 1]; While[! palQ[n] && k < tol, n = ar[n]; k++]; If[k == tol, n = -1]; n, {n, 0, 64}] (* Jayanta Basu, Jul 11 2013 *)
Table[Module[{k=n+IntegerReverse[n]}, While[k!=IntegerReverse[k], k=k+IntegerReverse[k]]; k], {n, 0, 70}] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Jul 19 2016 *)
PROG
(ARIBAS): var st: stack; test: boolean; end; for k := 0 to 60 do n := k; test := true; while test do n := n + int_reverse(n); test := n <> int_reverse(n); end; stack_push(st, n); end; stack2array(st).
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, May 18 2001
EXTENSIONS
Corrected and extended by Klaus Brockhaus, May 20 2001
More terms from Ray Chandler, Jul 25 2003
STATUS
approved