login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345113
a(n) is the palindrome reached after A345112(n) steps under repeated applications of the map x -> A345111(x), starting with n, or 0 if no palindrome is ever reached.
5
2, 4, 6, 8, 11, 33, 55, 77, 99, 11, 22, 33, 44, 55, 66, 77, 88, 99, 323, 22, 33, 44, 55, 66, 77, 88, 99, 323, 121, 33, 44, 55, 66, 77, 88, 99, 323, 121, 683737386, 44, 55, 66, 77, 88, 99, 323, 121, 683737386
OFFSET
1,1
COMMENTS
First differs from A061563 at n = 19.
EXAMPLE
For n = 19: 19 + 91 = 110, 110 + 101 = 211, 211 + 112 = 323 and 323 is a palindrome, so a(19) = 323.
PROG
(PARI) eva(n) = subst(Pol(n), x, 10)
rot(vec) = if(#vec < 2, return(vec)); my(s=concat(Str(2), ".."), v=[]); s=concat(s, Str(#vec)); v=vecextract(vec, s); v=concat(v, vec[1]); v
a(n) = my(x=n); while(1, x=x+eva(rot(digits(x))); if(digits(x)==Vecrev(digits(x)), return(x)))
(Python)
def pal(s): return s == s[::-1]
def rotl(s): return s[1:] + s[0]
def A345111(n): return n + int(rotl(str(n)))
def a(n):
i, iter, seen = 0, n, set()
while not (iter > n and pal(str(iter))) and iter not in seen:
seen.add(iter)
i, iter = i+1, A345111(iter)
return iter if iter > n and pal(str(iter)) else 0
print([a(n) for n in range(1, 49)]) # Michael S. Branicky, Jun 09 2021
KEYWORD
nonn,base,more
AUTHOR
Felix Fröhlich, Jun 09 2021
STATUS
approved