login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345115
Trajectory of 49 under the map x -> A345111(x).
5
49, 143, 574, 1319, 4510, 9614, 15763, 73394, 107341, 180752, 988273, 1871012, 10581133, 16392464, 80317105, 83488163, 118369801, 302067812, 322745935, 550205288, 1052258173, 1574839904, 7323238945, 10555628402, 16111912423, 77231036654, 149541403201
OFFSET
0,1
COMMENTS
Does the sequence contain a palindrome?
There is no palindrome among the initial 100000 (10^5) terms.
EXAMPLE
49 + 94 = 143, 143 + 431 = 574, 574 + 745 = 1319, 1319 + 3191 = 4510, 4510 + 5104 = 9614, ...
PROG
(PARI) eva(n) = subst(Pol(n), x, 10)
rot(vec) = if(#vec < 2, return(vec)); my(s=concat(Str(2), ".."), v=[]); s=concat(s, Str(#vec)); v=vecextract(vec, s); v=concat(v, vec[1]); v
terms(n) = my(x=49); for(i=1, n, print1(x, ", "); x=x+eva(rot(digits(x))))
terms(50) \\ Print initial 50 terms
(Python)
def pal(s): return s == s[::-1]
def rotl(s): return s[1:] + s[0]
def A345111(n): return n + int(rotl(str(n)))
def aupto(n):
alst = [49]
for i in range(n): alst.append(A345111(alst[-1]))
return alst
print(aupto(26)) # Michael S. Branicky, Jun 09 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Felix Fröhlich, Jun 09 2021
STATUS
approved