login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Trajectory of 49 under the map x -> A345111(x).
5

%I #6 Jun 09 2021 23:24:37

%S 49,143,574,1319,4510,9614,15763,73394,107341,180752,988273,1871012,

%T 10581133,16392464,80317105,83488163,118369801,302067812,322745935,

%U 550205288,1052258173,1574839904,7323238945,10555628402,16111912423,77231036654,149541403201

%N Trajectory of 49 under the map x -> A345111(x).

%C Does the sequence contain a palindrome?

%C There is no palindrome among the initial 100000 (10^5) terms.

%e 49 + 94 = 143, 143 + 431 = 574, 574 + 745 = 1319, 1319 + 3191 = 4510, 4510 + 5104 = 9614, ...

%o (PARI) eva(n) = subst(Pol(n), x, 10)

%o rot(vec) = if(#vec < 2, return(vec)); my(s=concat(Str(2), ".."), v=[]); s=concat(s, Str(#vec)); v=vecextract(vec, s); v=concat(v, vec[1]); v

%o terms(n) = my(x=49); for(i=1, n, print1(x, ", "); x=x+eva(rot(digits(x))))

%o terms(50) \\ Print initial 50 terms

%o (Python)

%o def pal(s): return s == s[::-1]

%o def rotl(s): return s[1:] + s[0]

%o def A345111(n): return n + int(rotl(str(n)))

%o def aupto(n):

%o alst = [49]

%o for i in range(n): alst.append(A345111(alst[-1]))

%o return alst

%o print(aupto(26)) # _Michael S. Branicky_, Jun 09 2021

%Y Cf. A345110, A345111, A345112, A345113, A345114.

%K nonn,base

%O 0,1

%A _Felix Fröhlich_, Jun 09 2021