login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345116
Irregular triangle T(n,k) read by rows in which row n has length the n-th triangular number A000217(n) and every column k lists the positive integers A000027, n >= 1, k >= 1.
2
1, 2, 1, 1, 3, 2, 2, 1, 1, 1, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5
OFFSET
1,2
COMMENTS
Row n lists the terms of the n-th row of A333516 in nonincreasing order.
The sum of the divisors of the terms of the n-th row of the triangle is equal to A175254(n), equaling the volume of the stepped pyramid with n levels described in A245092.
EXAMPLE
Triangle begins:
1;
2, 1, 1;
3, 2, 2, 1, 1, 1;
4, 3, 3, 2, 2, 2, 1, 1, 1, 1;
5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1;
6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1;
...
For n = 6 the divisors of the terms of the 6th row of triangle are:
6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1;
3, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
2, 1, 1, 1;
1;
The sum of these divisors is equal to A175254(6) = 82, equaling the volume of the stepped pyramid with six levels described in A245092.
CROSSREFS
Mirror of A110730.
Row lengths gives A000217, n >= 1.
Row sums gives A000292, n >= 1.
Every column gives A000027.
Sequence in context: A343196 A016441 A340581 * A278042 A338714 A211161
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Jun 08 2021
STATUS
approved