login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077076 Trajectory of 537 under the Reverse and Add! operation carried out in base 2, written in base 10. 9
537, 1146, 1899, 3618, 4713, 9522, 14427, 28386, 37533, 84966, 138123, 353004, 466209, 738024, 833301, 1525224, 1718853, 3048912, 3239469, 6196176, 6583437, 12389280, 12770397, 24975264, 25749789, 49944384, 50706621, 100282176 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The base 2 trajectory of 537 = A075252(4) provably does not contain a palindrome. A proof can be based on the formula given below.

lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 1.

lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 0.

Interleaving of 3*A177682, 6*A177683, 3*A177684, 6*A177685.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2

Index entries for sequences related to Reverse and Add!

FORMULA

a(0), ..., a(11) as above; for n > 11 and

n = 0 (mod 4): a(n) = 3*2^(2*k+13)+18249*2^k-3 where k = (n-4)/4;

n = 1 (mod 4): a(n) = 6*2^(2*k+13)-12102*2^k where k = (n-5)/4;

n = 2 (mod 4): a(n) = 6*2^(2*k+13)+11718*2^k-3 where k = (n-6)/4;

n = 3 (mod 4): a(n) = 12*2^(2*k+13)-11910*2^k where k = (n-7)/4.

G.f.: 3*(179+382*x+96*x^2+60*x^3-328*x^4-444*x^5+1170*x^6+2232*x^7 +1166*x^8+5644*x^9+15402*x^10+46922*x^11+39850*x^12-62920*x^13-132612*x^14 -97532*x^15-34148*x^16+83800*x^17+109224*x^18+21856*x^19) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)).

G.f. for the sequence starting at a(12): 3*x^12*(155403+246008*x-188442*x^2-229616*x^3-260350*x^4-508920*x^5+293388*x^6+492528*x^7) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4))

a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013

EXAMPLE

537 (decimal) = 1000011001 -> 1000011001 + 1001100001 = 10001111010= 1146 (decimal).

MATHEMATICA

NestWhileList[# + IntegerReverse[#, 2] &, 537,  # !=

IntegerReverse[#, 2] &, 1, 27] (* Robert Price, Oct 18 2019 *)

PROG

(PARI) trajectory(n, steps) = {local(v, k=n); for(j=0, steps, print1(k, ", "); v=binary(k); k+=sum(j=1, #v, 2^(j-1)*v[j]))};

trajectory(537, 27);

(MAGMA) trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a, base)), base); Append(~S, a); end for; return S; end function; trajectory(537, 27, 2);

(Haskell)

a077076 n = a077076_list !! n

a077076_list = iterate a055944 537  -- Reinhard Zumkeller, Apr 21 2013

CROSSREFS

Cf. A058042 (trajectory of 22 in base 2, written in base 2), A061561 (trajectory of 22 in base 2), A075253 (trajectory of 77 in base 2), A075268 (trajectory of 442 in base 2), A077077 (trajectory of 775 in base 2), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n).

Cf. A177682 (a(4*n)/3), A177683 (a(4*n+1)/6), A177684 (a(4*n+2)/3), A177685 (a(4*n+3)/6).

Sequence in context: A059949 A256088 A250709 * A033916 A236879 A206067

Adjacent sequences:  A077073 A077074 A077075 * A077077 A077078 A077079

KEYWORD

base,nonn

AUTHOR

Klaus Brockhaus, Oct 25 2002

EXTENSIONS

Comment edited and three comments added, g.f. edited, PARI program revised, MAGMA program and crossrefs added by Klaus Brockhaus, May 12 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 10:59 EST 2021. Contains 349486 sequences. (Running on oeis4.)