The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”). Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077076 Trajectory of 537 under the Reverse and Add! operation carried out in base 2, written in base 10. 9
 537, 1146, 1899, 3618, 4713, 9522, 14427, 28386, 37533, 84966, 138123, 353004, 466209, 738024, 833301, 1525224, 1718853, 3048912, 3239469, 6196176, 6583437, 12389280, 12770397, 24975264, 25749789, 49944384, 50706621, 100282176 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The base 2 trajectory of 537 = A075252(4) provably does not contain a palindrome. A proof can be based on the formula given below. lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 2 = 1. lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 2 = 0. Interleaving of 3*A177682, 6*A177683, 3*A177684, 6*A177685. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2 FORMULA a(0), ..., a(11) as above; for n > 11 and n = 0 (mod 4): a(n) = 3*2^(2*k+13)+18249*2^k-3 where k = (n-4)/4; n = 1 (mod 4): a(n) = 6*2^(2*k+13)-12102*2^k where k = (n-5)/4; n = 2 (mod 4): a(n) = 6*2^(2*k+13)+11718*2^k-3 where k = (n-6)/4; n = 3 (mod 4): a(n) = 12*2^(2*k+13)-11910*2^k where k = (n-7)/4. G.f.: 3*(179+382*x+96*x^2+60*x^3-328*x^4-444*x^5+1170*x^6+2232*x^7 +1166*x^8+5644*x^9+15402*x^10+46922*x^11+39850*x^12-62920*x^13-132612*x^14 -97532*x^15-34148*x^16+83800*x^17+109224*x^18+21856*x^19) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)). G.f. for the sequence starting at a(12): 3*x^12*(155403+246008*x-188442*x^2-229616*x^3-260350*x^4-508920*x^5+293388*x^6+492528*x^7) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)) a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013 EXAMPLE 537 (decimal) = 1000011001 -> 1000011001 + 1001100001 = 10001111010= 1146 (decimal). MATHEMATICA NestWhileList[# + IntegerReverse[#, 2] &, 537,  # != IntegerReverse[#, 2] &, 1, 27] (* Robert Price, Oct 18 2019 *) PROG (PARI) trajectory(n, steps) = {local(v, k=n); for(j=0, steps, print1(k, ", "); v=binary(k); k+=sum(j=1, #v, 2^(j-1)*v[j]))}; trajectory(537, 27); (MAGMA) trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a, base)), base); Append(~S, a); end for; return S; end function; trajectory(537, 27, 2); (Haskell) a077076 n = a077076_list !! n a077076_list = iterate a055944 537  -- Reinhard Zumkeller, Apr 21 2013 CROSSREFS Cf. A058042 (trajectory of 22 in base 2, written in base 2), A061561 (trajectory of 22 in base 2), A075253 (trajectory of 77 in base 2), A075268 (trajectory of 442 in base 2), A077077 (trajectory of 775 in base 2), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n). Cf. A177682 (a(4*n)/3), A177683 (a(4*n+1)/6), A177684 (a(4*n+2)/3), A177685 (a(4*n+3)/6). Sequence in context: A059949 A256088 A250709 * A033916 A236879 A206067 Adjacent sequences:  A077073 A077074 A077075 * A077077 A077078 A077079 KEYWORD base,nonn AUTHOR Klaus Brockhaus, Oct 25 2002 EXTENSIONS Comment edited and three comments added, g.f. edited, PARI program revised, MAGMA program and crossrefs added by Klaus Brockhaus, May 12 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 10:59 EST 2021. Contains 349486 sequences. (Running on oeis4.)