login
A077075
Least k such that Z(k,4) <= Z(n,5) where Z(m,s) = Sum_{i>=m} 1/i^s.
0
2, 2, 3, 5, 7, 9, 12, 14, 17, 20, 23, 26, 30, 33, 36, 40, 44, 47, 51, 55, 59, 63, 67, 71, 75, 79, 84, 88, 92, 97, 101, 106, 111, 115, 120, 125, 129, 134, 139, 144, 149, 154, 159, 164, 169, 175, 180, 185, 190, 196, 201, 206, 212, 217, 223, 228, 234, 240, 245, 251
OFFSET
0,1
PROG
(PARI) u=4; v=5; a(n)=if(n<0, 0, k=1; while((zeta(u)-sum(k=1, k-1, 1/k^u))>(zeta(v)-sum(i=1, n-1, 1/i^v)), k++); k)
CROSSREFS
Cf. A051890 for least k such that Z(k,2) <= Z(n,3).
Sequence in context: A125505 A357381 A061565 * A369570 A190660 A180158
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 29 2002
STATUS
approved