login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190660 Number of triangular numbers T(k) between powers of 2, 2^(n-1) < T(k) <= 2^n. 3
1, 0, 1, 1, 2, 2, 3, 5, 7, 9, 13, 19, 27, 37, 53, 75, 106, 150, 212, 300, 424, 600, 848, 1200, 1697, 2399, 3393, 4799, 6786, 9598, 13573, 19195, 27146, 38390, 54292, 76780, 108584, 153560, 217167, 307121, 434334, 614242, 868669, 1228483, 1737338, 2456966 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Count of triangular numbers between powers of 2.
a(n)/a(n-1) converges to sqrt(2) (A002193). [John W. Nicholson, May 16 2011]
Essentially first differences of A017911. - Jeremy Gardiner, Aug 11 2013. Also second differences of A001521. - N. J. A. Sloane, Apr 27 2014
LINKS
EXAMPLE
Between 2^(6-1)=32 and 2^6=64 are T(8)=36, T(9)=45, T(10)=55 so A190660(6)=3.
MATHEMATICA
TriangularIndex[n_] := (-1 + Sqrt[1 + 8*n])/2; Differences[Table[Floor[TriangularIndex[2^n]], {n, -1, 50}]] (* T. D. Noe, May 19 2011 *)
PROG
(PARI) a(n) = if (n==0, 1, sum(i=2^(n-1)+1, 2^n, ispolygonal(i, 3))); \\ Michel Marcus, Apr 28 2014
CROSSREFS
Sequence in context: A061565 A077075 A369570 * A180158 A320689 A173693
KEYWORD
nonn
AUTHOR
John W. Nicholson, May 16 2011
EXTENSIONS
Extended by T. D. Noe, May 19 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 07:07 EST 2024. Contains 370294 sequences. (Running on oeis4.)