OFFSET
0,1
COMMENTS
290 is conjectured (cf. A066450) to be the smallest number such that the Reverse and Add! algorithm in base 4 does not lead to a palindrome. 318 (not 255 since 255 is a base 4 palindrome) is up to now the smallest number whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below.
lim_{n -> infinity} a(n)/a(n-1) = 2 for n mod 3 in {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = 1 for n mod 3 = 0.
LINKS
FORMULA
a(0) = 318; a(1) = 1071; for n > 1 and n = 2 (mod 6): a(n) = 5*4^(2*k+5)-5*4^(k+2) where k = (n-2)/6; n = 3 (mod 6): a(n) = 5*4^(2*k+5)+55*4^(k+2)-15 where k = (n-3)/6; n = 4 (mod 6): a(n) = 10*4^(2*k+5)+30*4^(k+2)-10 where k = (n-4)/6; n = 5 (mod 6): a(n) = 20*4^(2*k+5)-5*4^(k+2) where k = (n-5)/6; n = 0 (mod 6): a(n) = 20*4^(2*k+5)+235*4^(k+2)-15 where k = (n-6)/6; n = 1 (mod 6): a(n) = 40*4^(2*k+5)+150*4^(k+2)-10 where k = (n-7)/6.
G.f.: 3*(106 +357*x +1680*x^2 +1465*x^3 +1785*x^4 -1600*x^5 -1900*x^6 -3400*x^7 -6800*x^8 -9780*x^9 -9860*x^10 +6720*x^11 +10064*x^12 +11088*x^13) / ((1-x)*(1+x+x^2)*(1-2*x^3)*(1+2*x^3)*(1-4*x^3)).
EXAMPLE
318 (decimal) = 10332 -> 10332 + 23301 = 100233 = 1071 (decimal).
MATHEMATICA
NestWhileList[# + IntegerReverse[#, 4] &, 318, # !=
IntegerReverse[#, 4] &, 1, 26] (* Robert Price, Oct 18 2019 *)
PROG
(PARI) {m=318; stop=29; c=0; while(c<stop, print1(k=m, ", "); rev=0; while(k>0, d=divrem(k, 4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}
(Magma) trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a, base)), base); Append(~S, a); end for; return S; end function; trajectory(318, 26, 4);
CROSSREFS
Cf. A058042 (trajectory of binary number 10110 (decimal 22)), A061561 (A058042 written in base 10), A066450 (conjectured minimal k so that the trajectory of k in base n does not lead to a palindrome).
Cf. A075253 (trajectory of 77 in base 2), A075420 (trajectory of n in base 4 (presumably) does not reach a palindrome), A075421 (trajectory of n in base 4 (presumably) does not reach a palindrome and (presumably) does not join the trajectory of any term m < n), A075299 (trajectory of 290 in base 4), A075466 (trajectory of 266718 in base 4), A075467 (trajectory of 270798 in base 4), A076247 (trajectory of 1059774 in base 4), A076248 (trajectory of 1059831 in base 4), A091675 (trajectory of n in base 4 (presumably) does not join the trajectory of any m < n).
KEYWORD
base,nonn
AUTHOR
Klaus Brockhaus, Sep 05 2002
EXTENSIONS
Two comments added, g.f. edited, MAGMA program and cross-references added by Klaus Brockhaus, Oct 26 2009
STATUS
approved